Unraveling overlapping deletions by agglomerative clustering

Wittler R (2013)
BMC Genomics 14(Suppl 1): S12.

OA correctedArticle.pdf
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Background Structural variations in human genomes, such as deletions, play an important role in cancer development. Next-Generation Sequencing technologies have been central in providing ways to detect such variations. Methods like paired-end mapping allow to simultaneously analyze data from several samples in order to, e.g., distinguish tumor from patient specific variations. However, it has been shown that, especially in this setting, there is a need to explicitly take overlapping deletions into consideration. Existing tools have only minor capabilities to call overlapping deletions, unable to unravel complex signals to obtain consistent predictions. Result We present a first approach specifically designed to cluster short-read paired-end data into possibly overlapping deletion predictions. The method does not make any assumptions on the composition of the data, such as the number of samples, heterogeneity, polyploidy, etc. Taking paired ends mapped to a reference genome as input, it iteratively merges mappings to clusters based on a similarity score that takes both the putative location and size of a deletion into account. Conclusion We demonstrate that agglomerative clustering is suitable to predict deletions. Analyzing real data from three samples of a cancer patient, we found putatively overlapping deletions and observed that, as a side-effect, erroneous mappings are mostly identified as singleton clusters. An evaluation on simulated data shows, compared to other methods which can output overlapping clusters, high accuracy in separating overlapping from single deletions.
BMC Genomics
Suppl 1


Wittler R. Unraveling overlapping deletions by agglomerative clustering. BMC Genomics. 2013;14(Suppl 1):S12.
Wittler, R. (2013). Unraveling overlapping deletions by agglomerative clustering. BMC Genomics, 14(Suppl 1), S12. doi:10.1186/1471-2164-14-S1-S12
Wittler, R. (2013). Unraveling overlapping deletions by agglomerative clustering. BMC Genomics 14, S12.
Wittler, R., 2013. Unraveling overlapping deletions by agglomerative clustering. BMC Genomics, 14(Suppl 1), p S12.
R. Wittler, “Unraveling overlapping deletions by agglomerative clustering”, BMC Genomics, vol. 14, 2013, pp. S12.
Wittler, R.: Unraveling overlapping deletions by agglomerative clustering. BMC Genomics. 14, S12 (2013).
Wittler, Roland. “Unraveling overlapping deletions by agglomerative clustering”. BMC Genomics 14.Suppl 1 (2013): S12.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
Access Level
OA Open Access
Zuletzt Hochgeladen

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: Critical issues to discern between modulatory effects and potential artefacts.
Nuñez-Sánchez MA, Dávalos A, González-Sarrías A, Casas-Agustench P, Visioli F, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, Martínez-Díaz F, Tomás-Barberán FA, García-Conesa MT, Espín JC., Mol Nutr Food Res 59(10), 2015
PMID: 26105520
MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells.
Choo KB, Soon YL, Nguyen PN, Hiew MS, Huang CJ., J Biomed Sci 21(), 2014
PMID: 25287248
Haploid to diploid alignment for variation calling assessment.
Mäkinen V, Rahkola J., BMC Bioinformatics 14 Suppl 15(), 2013
PMID: 24564537

49 References

Daten bereitgestellt von Europe PubMed Central.

MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus.
Juhila J, Sipila T, Icay K, Nicorici D, Ellonen P, Kallio A, Korpelainen E, Greco D, Hovatta I., PLoS ONE 6(6), 2011
PMID: 21731767
miRBase: tools for microRNA genomics.
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ., Nucleic Acids Res. 36(Database issue), 2008
PMID: 17991681
The microRNA.org resource: targets and expression.
Betel D, Wilson M, Gabow A, Marks DS, Sander C., Nucleic Acids Res. 36(Database issue), 2008
PMID: 18158296
Combinatorial microRNA target predictions.
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N., Nat. Genet. 37(5), 2005
PMID: 15806104
The role of site accessibility in microRNA target recognition.
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E., Nat. Genet. 39(10), 2007
PMID: 17893677
The impact of microRNAs on protein output.
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP., Nature 455(7209), 2008
PMID: 18668037
Nonmuscle myosin IIA is associated with poor prognosis of esophageal squamous cancer.
Xia ZK, Yuan YC, Yin N, Yin BL, Tan ZP, Hu YR., Dis. Esophagus 25(5), 2012
PMID: 21951916
The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells.
Derycke L, Stove C, Vercoutter-Edouart AS, De Wever O, Dolle L, Colpaert N, Depypere H, Michalski JC, Bracke M., Int. J. Dev. Biol. 55(7-9), 2011
PMID: 22161839
Identification of PP2A complexes and pathways involved in cell transformation.
Sablina AA, Hector M, Colpaert N, Hahn WC., Cancer Res. 70(24), 2010
PMID: 21159657
miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts.
Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, Utani A, Hirano A, Yamashita S., J. Invest. Dermatol. 132(6), 2012
PMID: 22358059
TGF-β-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts.
Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H., J. Immunol. 188(7), 2012
PMID: 22379029
MicroRNA-143 is critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/cyclin D1 signaling
Repression of versican expression by microRNA-143.
Wang X, Hu G, Zhou J., J. Biol. Chem. 285(30), 2010
PMID: 20489207
Widespread changes in protein synthesis induced by microRNAs.
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N., Nature 455(7209), 2008
PMID: 18668040
MicroRNA dysregulation in colorectal cancer: a clinical perspective.
Dong Y, Wu WK, Wu CW, Sung JJ, Yu J, Ng SS., Br. J. Cancer 104(6), 2011
PMID: 21364594
MicroRNA networks in mouse lung organogenesis.
Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, Kislinger T, Wigle DA., PLoS ONE 5(5), 2010
PMID: 20520778
Identifying the target mRNAs of microRNAs in colorectal cancer.
Kim S, Choi M, Cho KH., Comput Biol Chem 33(1), 2009
PMID: 18723399
MicroRNA-182 and microRNA-200a control G-protein subunit alpha-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells
Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer.
Anglim PP, Galler JS, Koss MN, Hagen JA, Turla S, Campan M, Weisenberger DJ, Laird PW, Siegmund KD, Laird-Offringa IA., Mol. Cancer 7(), 2008
PMID: 18616821
Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes.
Watanabe Y, Kim HS, Castoro RJ, Chung W, Estecio MR, Kondo K, Guo Y, Ahmed SS, Toyota M, Itoh F, Suk KT, Cho MY, Shen L, Jelinek J, Issa JP., Gastroenterology 136(7), 2009
PMID: 19375421
CpG island hypermethylation in human astrocytomas.
Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D, Pfeifer GP., Cancer Res. 70(7), 2010
PMID: 20233874
DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status.
Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y, Yamamoto K., Inflamm. Bowel Dis. 17(9), 2011
PMID: 21830274


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23369161
PubMed | Europe PMC

Suchen in

Google Scholar