Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action

Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP (2012)
Frontiers in Neural Circuits 6: 108.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes ("optic flow"). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action-perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Neural Circuits
Band
6
Seite
108
ISSN
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits. 2012;6:108.
Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., & Lindemann, J. P. (2012). Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits, 6, 108. doi:10.3389/fncir.2012.00108
Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., and Lindemann, J. P. (2012). Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits 6, 108.
Egelhaaf, M., et al., 2012. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits, 6, p 108.
M. Egelhaaf, et al., “Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action”, Frontiers in Neural Circuits, vol. 6, 2012, pp. 108.
Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., Lindemann, J.P.: Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits. 6, 108 (2012).
Egelhaaf, Martin, Boeddeker, Norbert, Kern, Roland, Kurtz, Rafael, and Lindemann, Jens Peter. “Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action”. Frontiers in Neural Circuits 6 (2012): 108.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2013-01-29T14:10:17Z

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Taking an insect-inspired approach to bird navigation.
Pritchard DJ, Healy SD., Learn Behav 46(1), 2018
PMID: 29484541
The functional organization of descending sensory-motor pathways in Drosophila.
Namiki S, Dickinson MH, Wong AM, Korff W, Card GM., Elife 7(), 2018
PMID: 29943730
Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision.
Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M., Front Behav Neurosci 12(), 2018
PMID: 30057530
Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.
Vasas V, Hanley D, Kevan PG, Chittka L., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(4), 2017
PMID: 28314998
Associative visual learning by tethered bees in a controlled visual environment.
Buatois A, Pichot C, Schultheiss P, Sandoz JC, Lazzari CR, Chittka L, Avarguès-Weber A, Giurfa M., Sci Rep 7(1), 2017
PMID: 29018218
Efficient encoding of motion is mediated by gap junctions in the fly visual system.
Wang S, Borst A, Zaslavsky N, Tishby N, Segev I., PLoS Comput Biol 13(12), 2017
PMID: 29206224
Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Optic flow stabilizes flight in ruby-throated hummingbirds.
Ros IG, Biewener AA., J Exp Biol 219(pt 16), 2016
PMID: 27284072
Evolution of Biological Image Stabilization.
Hardcastle BJ, Krapp HG., Curr Biol 26(20), 2016
PMID: 27780044
Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
More than colour attraction: behavioural functions of flower patterns.
Hempel de Ibarra N, Langridge KV, Vorobyev M., Curr Opin Insect Sci 12(), 2015
PMID: 27064650
Scene perception and the visual control of travel direction in navigating wood ants.
Collett TS, Lent DD, Graham P., Philos Trans R Soc Lond B Biol Sci 369(1636), 2014
PMID: 24395962
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Near-optimal decoding of transient stimuli from coupled neuronal subpopulations.
Trousdale J, Carroll SR, Gabbiani F, Josić K., J Neurosci 34(36), 2014
PMID: 25186763
Closed-loop neuroscience and neuroengineering.
Potter SM, El Hady A, Fetz EE., Front Neural Circuits 8(), 2014
PMID: 25294988
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890

243 References

Daten bereitgestellt von Europe PubMed Central.

Figure tracking by flies is supported by parallel visual streams.
Aptekar JW, Shoemaker PA, Frye MA., Curr. Biol. 22(6), 2012
PMID: 22386313
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird E, Kornfeldt T, Dacke M., J. Exp. Biol. 213(Pt 10), 2010
PMID: 20435812
Visual control of flight speed in honeybees.
Baird E, Srinivasan MV, Zhang S, Cowling A., J. Exp. Biol. 208(Pt 20), 2005
PMID: 16215217
Visual control of flight speed and height in the honeybee
Baird E., Srinivasan M., Zhang S., Lamont R., Cowling A.., 2006
Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
Barnett PD, Nordstrom K, O'carroll DC., Curr. Biol. 17(7), 2007
PMID: 17363248
Retinal lattice, visual field and binocularities in flies
Beersma D., Stavenga D., Kuiper J.., 1977
Visual stimulation of saccades in magnetically tethered Drosophila.
Bender JA, Dickinson MH., J. Exp. Biol. 209(Pt 16), 2006
PMID: 16888065
The world from a cat's perspective--statistics of natural videos.
Betsch BY, Einhauser W, Kording KP, Konig P., Biol Cybern 90(1), 2004
PMID: 14762723
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Visual gaze control during peering flight manoeuvres in honeybees.
Boeddeker N, Hemmi JM., Proc. Biol. Sci. 277(1685), 2009
PMID: 20007175
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Noise, not stimulus entropy, determines neural information rate.
Borst A., J Comput Neurosci 14(1), 2003
PMID: 12435922
Drosophila's view on insect vision.
Borst A., Curr. Biol. 19(1), 2009
PMID: 19138592
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Synergy in a neural code.
Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck RR., Neural Comput 12(7), 2000
PMID: 10935917
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Free-flight responses of Drosophila melanogaster to attractive odors.
Budick SA, Dickinson MH., J. Exp. Biol. 209(Pt 15), 2006
PMID: 16857884
The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.
Budick SA, Reiser MB, Dickinson MH., J. Exp. Biol. 210(Pt 23), 2007
PMID: 18025010
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Defining the computational structure of the motion detector in Drosophila.
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
Peering – a locust behavior pattern for obtaining motion parallax information
Collett T.., 1978
Memory use in insect visual navigation.
Collett TS, Collett M., Nat. Rev. Neurosci. 3(7), 2002
PMID: 12094210
Navigational memories in ants and bees: memory retrieval when selecting and following routes
Collett T., Graham P., Harris R., Hempel-De-Ibarra N.., 2006
Depth vision in animals
Collett T., Harkness L.., 1982
Visual control of flight behaviour in the hoverfly Syritta pipiens L
Collett T., Land M.., 1975
Relative motion parallax and target localization in the locust, Schistocerca gregaria
Collett T., Paterson C.., 1991
Extracting ego-motion from optic flow: limits of accuracy and neuronal filters
Dahmen H., Franz M., Krapp H.., 2000
Compensation for height in the control of groundspeed by Drosophila in a new, ‘barber's pole’ wind tunnel
David C.., 1982
Head-bobbing during walking, running and flying: relative motion perception in the pigeon
Davies M., Green P.., 1988
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordstrom K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Reliability and statistical efficiency of a blowfly movement-sensitive neuron
de R., Bialek W.., 1995
Reproducibility and variability in neural spike trains.
de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W., Science 275(5307), 1997
PMID: 9065407
Horizontal movement detectors of honeybees. Directionally-selective visual neurons in the lobula and brain
DeVoe R., Kaiser W., Ohm J., Stone L.., 1982
The behavioral relevance of landmark texture for honeybee homing.
Dittmar L, Egelhaaf M, Sturzl W, Boeddeker N., Front Behav Neurosci 5(), 2011
PMID: 21541258
Goal seeking in honeybees: matching of optic flow snapshots?
Dittmar L, Sturzl W, Baird E, Boeddeker N, Egelhaaf M., J. Exp. Biol. 213(Pt 17), 2010
PMID: 20709919
Statistics of natural time-varying images
Dong D., Attick J.., 1995
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
Dynamic properties of large-field and small-field optomotor flight responses in Drosophila.
Duistermars BJ, Reiser MB, Zhu Y, Frye MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(7), 2007
PMID: 17551735
Efficient coding of natural time varying images in the early visual system.
Eckert MP, Buchsbaum G., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 339(1290), 1993
PMID: 8098870
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system
Egelhaaf M.., 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-Detection Cells, a new class of visual interneurones
Egelhaaf M.., 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-Cells
Egelhaaf M.., 1985
Dynamic properties of two control systems underlying visually guided turning in house-flies
Egelhaaf M.., 1987
The neural computation of visual motion
Egelhaaf M.., 2006
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Are there separate ON and OFF channels in fly motion vision?
Egelhaaf M, Borst A., Vis. Neurosci. 8(2), 1992
PMID: 1558827
Superior olivary complex organization and cytoarchitecture may be correlated with function and catarrhine primate phylogeny.
Hilbig H, Beil B, Hilbig H, Call J, Bidmon HJ., Brain Struct Funct 213(4-5), 2009
PMID: 19184100
Outdoor performance of a motion-sensitive neuron in the blowfly.
Egelhaaf M, Grewe J, Kern R, Warzecha AK., Vision Res. 41(27), 2001
PMID: 11712978
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Internal structure of the fly elementary motion detector.
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Honeybee dances communicate distances measured by optic flow.
Esch HE, Zhang S, Srinivasan MV, Tautz J., Nature 411(6837), 2001
PMID: 11385571
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
The response of the hovering hawk moth Macroglossum stellatarum to translatory pattern motion
Farina W., Kramer D., Varjú D.., 1995
The regulation of distance to dummy flowers during hovering flight in the hawk moth Macroglossum stellatarum
Farina W., Varjú D., Zhou Y.., 1994
Input organization of multifunctional motion-sensitive neurons in the blowfly.
Farrow K, Haag J, Borst A., J. Neurosci. 23(30), 2003
PMID: 14586008

Floreano D., Zufferey J.-C., Srinivasan M., Ellington C.., 2009
Visual control of flight speed in Drosophila melanogaster.
Fry SN, Rohrseitz N, Straw AD, Dickinson MH., J. Exp. Biol. 212(Pt 8), 2009
PMID: 19329746
Visual edge orientation shapes free-flight behavior in Drosophila.
Frye MA, Dickinson MH., Fly (Austin) 1(3), 2007
PMID: 18820449
Visual perception and the statistical properties of natural scenes.
Geisler WS., Annu Rev Psychol 59(), 2008
PMID: 17705683
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
Geurten BR, Nordstrom K, Sprayberry JD, Bolzon DM, O'Carroll DC., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766305
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster
Götz K.., 1987
Impact of photon noise on the reliability of a motion-sensitive neuron in the fly's visual system.
Grewe J, Kretzberg J, Warzecha AK, Egelhaaf M., J. Neurosci. 23(34), 2003
PMID: 14645469
Information and discriminability as measures of reliability of sensory coding.
Grewe J, Weckstrom M, Egelhaaf M, Warzecha AK., PLoS ONE 2(12), 2007
PMID: 18091998
Functional organization of the fly retina
Hardie R.., 1985
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Neural mechanisms of visual course control in insects
Hausen K., Egelhaaf M.., 1989
On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster
Heisenberg M., Wolf R.., 1979
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J. Neurophysiol. 94(3), 2005
PMID: 15917319
Multisensory control in insect oculomotor systems
Hengstenberg R.., 1993
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol. 6(7), 2008
PMID: 18651791
Nonlinear integration of visual and haltere inputs in fly neck motor neurons.
Huston SJ, Krapp HG., J. Neurosci. 29(42), 2009
PMID: 19846697
Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera
Ibbotson M.., 1991
ON and OFF pathways in Drosophila motion vision.
Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A., Nature 468(7321), 2010
PMID: 21068841
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
The rate of information transfer of naturalistic stimulation by graded potentials.
Juusola M, de Polavieja GG., J. Gen. Physiol. 122(2), 2003
PMID: 12860926
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors.
Juusola M, Kouvalainen E, Jarvilehto M, Weckstrom M., J. Gen. Physiol. 104(3), 1994
PMID: 7807062
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J. Neurophysiol. 90(3), 2003
PMID: 12736239
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Motion processing streams in Drosophila are behaviorally specialized.
Katsov AY, Clandinin TR., Neuron 59(2), 2008
PMID: 18667159
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Object detection by relative motion in freely flying flies
Kimmerle B., Srinivasan M., Egelhaaf M.., 1996
Different roles for the Fc epsilon RI gamma chain as a function of the receptor context.
Paolini R, Renard V, Vivier E, Ochiai K, Jouvin MH, Malissen B, Kinet JP., J. Exp. Med. 181(1), 1995
PMID: 7528770
The visual system of Musca: studies on optics, structure and function
Kirschfeld K.., 1972
The modulatory effects of serotonin and octopamine in the visual-system of the honey-bee (Apis mellifera L).2. Electrophysiological analysis of motion-sensitive neurons in the lobula
Kloppenburg P., Erber J.., 1995
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Motion parallax as a source of distance information in locusts and mantids
Kral K., Poteser M.., 1997
Neuronal matched filters for optic flow processing in flying insects
Krapp H.., 2000
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.
Kalb J, Egelhaaf M, Kurtz R., J. Neurosci. 28(37), 2008
PMID: 18784299
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791

Lappe M.., 2000
Matching coding, circuits, cells, and molecules to signals: general principles of retinal design in the fly's eye
Laughlin S.., 1994
Generalization of convex shapes by bees: what are shapes made of?
Lehrer M, Campan R., J. Exp. Biol. 208(Pt 17), 2005
PMID: 16109886
Motion cues provide the bee's visual world with a third dimension
Lehrer M., Srinivasan M., Zhang S., Horridge G.., 1988
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
The interpretation of a moving retinal image.
Longuet-Higgins HC, Prazdny K., Proc. R. Soc. Lond., B, Biol. Sci. 208(1173), 1980
PMID: 6106198
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess T., Laughlin S.., 1985
A simple vision-based algorithm for decision making in flying Drosophila.
Maimon G, Straw AD, Dickinson MH., Curr. Biol. 18(6), 2008
PMID: 18342508
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
The neck motor system of the fly, Calliphora erythrocephala. II. Sensory organization
Milde J., Seyan H., Strausfeld N.., 1987
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Head-bobbing of walking birds.
Necker R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(12), 2007
PMID: 17987297
Neural coding of natural stimuli: information at sub-millisecond resolution.
Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR., PLoS Comput. Biol. 4(3), 2008
PMID: 18369423
Neural specializations for small target detection in insects.
Nordstrom K., Curr. Opin. Neurobiol. 22(2), 2012
PMID: 22244741
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Small object detection neurons in female hoverflies.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 273(1591), 2006
PMID: 16720393
Visual place learning in Drosophila melanogaster.
Ofstad TA, Zuker CS, Reiser MB., Nature 474(7350), 2011
PMID: 21654803
Object- and self-movement detectors in the ventral nerve cord of the dragonfly
Olberg R.., 1981
Identified target-selective visual interneurons descending from the dragonfly brain
Olberg R.., 1986
Prey size selection and distance estimation in foraging adult dragonflies.
Olberg RM, Worthington AH, Fox JL, Bessette CE, Loosemore MP., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(9), 2005
PMID: 16034603
Noise in the visual system may be early
Pelli D.., 1991
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Mechanisms of visual distance perception in the hawk moth Macroglossum stellatarum
Pfaff M., Varjú D.., 1991
Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.
Portelli G, Ruffier F, Roubieu FL, Franceschini N., PLoS ONE 6(5), 2011
PMID: 21589861
Egomotion and relative depth map from optical flow.
Prazdny K., Biol Cybern 36(2), 1980
PMID: 7353067
Humans can use optic flow to estimate distance of travel.
Redlick FP, Jenkin M, Harris LR., Vision Res. 41(2), 2001
PMID: 11163855
Autocorrelation, a principle for the evaluation of sensory information by the central nervous system
Reichardt W.., 1961
Figure-ground discrimination by relative movement in the visual system of the fly. Part I: experimental results
Reichardt W., Poggio T.., 1979
Figure-ground discrimination by relative movement in the visual system of the fly. Part II: towards the neural circuitry
Reichardt W., Poggio T., Hausen K.., 1983
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Drosophila fly straight by fixating objects in the face of expanding optic flow.
Reiser MB, Dickinson MH., J. Exp. Biol. 213(Pt 10), 2010
PMID: 20435828
Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster.
Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M., Neuron 56(1), 2007
PMID: 17920022
Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects.
Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I., J. Exp. Biol. 212(Pt 9), 2009
PMID: 19376953
Motion parallax and other dynamic cues for depth vision
Rogers B.., 1993
Variability of blowfly head optomotor responses.
Rosner R, Egelhaaf M, Grewe J, Warzecha AK., J. Exp. Biol. 212(Pt 8), 2009
PMID: 19329750
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Head movements in the flies (Calliphora) produced by deflexion of the halteres
Sandeman D., Markl H.., 1980
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila.
Schnell B, Raghu SV, Nern A, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(5), 2012
PMID: 22411431
Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees
Seidl R., Kaiser W.., 1981
Summation of visual and mechanosensory feedback in Drosophila flight control.
Sherman A, Dickinson MH., J. Exp. Biol. 207(Pt 1), 2004
PMID: 14638840
Natural image statistics and neural representation.
Simoncelli EP, Olshausen BA., Annu. Rev. Neurosci. 24(), 2001
PMID: 11520932
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
The locust's use of motion parallax to measure distance.
Sobel EC., J. Comp. Physiol. A 167(5), 1990
PMID: 2074547
Bees perceive illusory colours induced by movement.
Srinivasan M, Lehrer M, Wehner R., Vision Res. 27(8), 1987
PMID: 3424676
Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries
Srinivasan M., Lehrer M., Horridge G.., 1990
Range perception through apparent image speed in freely flying honeybees.
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
Honeybee navigation: nature and calibration of the "odometer".
Srinivasan MV, Zhang S, Altwein M, Tautz J., Science 287(5454), 2000
PMID: 10657298
Honeybee navigation en route to the goal: visual flight control and odometry
Srinivasan M, Zhang S, Lehrer M, Collett T., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317712
Parallel processing in the optic lobes of flies and the occurrence of motion computing circuits
Strausfeld N., Douglass J., Campbell H., Higgins C.., 2006
Visual control of altitude in flying Drosophila.
Straw AD, Lee S, Dickinson MH., Curr. Biol. 20(17), 2010
PMID: 20727759
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Depth, contrast and view-based homing in outdoor scenes.
Sturzl W, Zeil J., Biol Cybern 96(5), 2007
PMID: 17443340
Spatial organization of visuomotor reflexes in Drosophila.
Tammero LF, Frye MA, Dickinson MH., J. Exp. Biol. 207(Pt 1), 2004
PMID: 14638838
Sensory systems and flight stability: what do insects measure and why?
Taylor G., Krapp H.., 2008
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206

Vaina L., Beardsley S., Rushton S.., 2004
The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster.
van Breugel F, Dickinson MH., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573757
Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation
van J.., 1992
Three modes of spatiotemporal preprocessing by eyes.
van Hateren JH., J. Comp. Physiol. A 172(5), 1993
PMID: 8331606
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Detection and tracking of moving objects by the fly Musca domestica
Virsik R., Reichardt W.., 1976
Optic flow-field variables trigger landing in hawk but not in pigeons.
Davies MN, Green PR., Naturwissenschaften 77(3), 1990
PMID: 2342582
Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable
Warzecha A.-K., Egelhaaf M.., 1996
Variability in spike trains during constant and dynamic stimulation.
Warzecha AK, Egelhaaf M., Science 283(5409), 1999
PMID: 10082467
Neuronal encoding of visual motion in real-time
Warzecha A.-K., Egelhaaf M.., 2001
Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala
Warzecha A, Horstmann W, Egelhaaf M., J. Exp. Biol. 202 Pt 22(), 1999
PMID: 10539965
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Reliability of a fly motion-sensitive neuron depends on stimulus parameters.
Warzecha AK, Kretzberg J, Egelhaaf M., J. Neurosci. 20(23), 2000
PMID: 11102498
Odometry and insect navigation.
Wolf H., J. Exp. Biol. 214(Pt 10), 2011
PMID: 21525309
The territorial flight of male houseflies (Fannia canicularis)
Zeil J.., 1986
Visual homing: an insect perspective.
Zeil J., Curr. Opin. Neurobiol. 22(2), 2012
PMID: 22221863
Visual homing in insects and robots
Zeil J., Boeddeker N., Stürzl W.., 2009

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23269913
PubMed | Europe PMC

Suchen in

Google Scholar