Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14

Wibberg D, Jelonek L, Rupp O, Kröber M, Eikmeyer FG, Goesmann A, Hartmann A, Borriss R, Grosch R, Pühler A, Schlüter A (2013)
Journal of Biotechnology 167(2): 142-155.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Anastomosis group AG1-IB isolates of the anamorphic basidiomycetous fungus Rhizoctonia solani Kühn affect various agricultural and horticultural important crops including bean, rice, soybean, figs, hortensia, cabbage and lettuce. To gain insights into the genome structure and content, the first draft genome sequence of R. solani AG1-IB isolate 7/3/14 was established. Four complete runs on the Genome Sequencer (GS) FLX platform (Roche Applied Science) yielding approx. a 25-fold coverage of the R. solani genome were accomplished. Assembly of the sequence reads by means of the gsAssembler software version 2.6 applying the heterozygotic mode resulted in numerous contigs and scaffolds and a predicted size of 87.1Mb for the diploid status of the genome. 'Contig-length vs. read-count' analysis revealed that the assembled contigs can be classified into five different groups. Detailed BLAST-analysis revealed that most contigs of group II feature high-scoring matches to other contigs of the same group suggesting that distinguishable allelic variants exist for many genes. Due to the supposed diploid and heterokaryotic nature of R. solani AG1-IB 7/3/14, this result has been anticipated. However, the heterokaryotic character of the isolate is not really supported by sequencing data obtained for the isolate R. solani AG1-IB 7/3/14. Coverage of group III contigs is twice as high as for group II contigs which can also be explained by the diploid status of the genome and indistinguishable alleles on homologous chromosomes. Assembly of sequence data led to the identification of the rRNA unit (group V contigs) and the mitochondrial (mt) genome (group IV contigs) which is a circular molecule of 162,751bp in size featuring a GC-content of 36.4%. The R. solani 7/3/14 mt-genome is one of the largest fungal mitochondrial genomes known to date. Its large size essentially is due to the presence of numerous non-conserved hypothetical ORFs and introns. Gene prediction for the R. solani AG1-IB 7/3/14 genome was conducted by the Augustus Gene Prediction Software for Eukaryotes (version 2.6.) applying the parameter set for the fungus Coprinopsis cinerea okayama 7#130. Gene prediction and annotation provided first insights into the R. solani AG1-IB 7/3/14 gene structure and content. In total, 12,422 genes were predicted. The average number of exons per gene is five. Exons have a mean length of 214bp, whereas introns on average are 66bp in length. Annotation of the genome revealed that 4169 of 12,422 genes could be assigned to KOG functional categories.
Publishing Year
ISSN
PUB-ID

Cite this

Wibberg D, Jelonek L, Rupp O, et al. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. Journal of Biotechnology. 2013;167(2):142-155.
Wibberg, D., Jelonek, L., Rupp, O., Kröber, M., Eikmeyer, F. G., Goesmann, A., Hartmann, A., et al. (2013). Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. Journal of Biotechnology, 167(2), 142-155.
Wibberg, D., Jelonek, L., Rupp, O., Kröber, M., Eikmeyer, F. G., Goesmann, A., Hartmann, A., Borriss, R., Grosch, R., Pühler, A., et al. (2013). Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. Journal of Biotechnology 167, 142-155.
Wibberg, D., et al., 2013. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. Journal of Biotechnology, 167(2), p 142-155.
D. Wibberg, et al., “Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14”, Journal of Biotechnology, vol. 167, 2013, pp. 142-155.
Wibberg, D., Jelonek, L., Rupp, O., Kröber, M., Eikmeyer, F.G., Goesmann, A., Hartmann, A., Borriss, R., Grosch, R., Pühler, A., Schlüter, A.: Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. Journal of Biotechnology. 167, 142-155 (2013).
Wibberg, Daniel, Jelonek, Lukas, Rupp, Oliver, Kröber, Magdalena, Eikmeyer, Felix Gregor, Goesmann, Alexander, Hartmann, Anton, Borriss, Rainer, Grosch, Rita, Pühler, Alfred, and Schlüter, Andreas. “Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14”. Journal of Biotechnology 167.2 (2013): 142-155.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.
Anderson JP, Hane JK, Stoll T, Pain N, Hastie ML, Kaur P, Hoogland C, Gorman JJ, Singh KB., Mol. Cell Proteomics 15(4), 2016
PMID: 26811357
Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.
Wibberg D, Rupp O, Blom J, Jelonek L, Krober M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Puhler A, Schluter A., PLoS ONE 10(12), 2015
PMID: 26690577
IMA Genome-F 4: Draft genome sequences of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygamai, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata.
Wingfield BD, Ades PK, Al-Naemi FA, Beirn LA, Bihon W, Crouch JA, de Beer ZW, De Vos L, Duong TA, Fields CJ, Fourie G, Kanzi AM, Malapi-Wight M, Pethybridge SJ, Radwan O, Rendon G, Slippers B, Santana QC, Steenkamp ET, Taylor PW, Vaghefi N, van der Merwe NA, Veltri D, Wingfield MJ., IMA Fungus 6(1), 2015
PMID: 26203426
Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.
Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A., Mol. Plant Microbe Interact. 28(9), 2015
PMID: 26011557
Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system.
Wibberg D, Rupp O, Jelonek L, Krober M, Verwaaijen B, Blom J, Winkler A, Goesmann A, Grosch R, Puhler A, Schluter A., J. Biotechnol. 203(), 2015
PMID: 25801332
What lies beneath: belowground defense strategies in plants.
De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K., Trends Plant Sci. 20(2), 2015
PMID: 25307784
Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism.
Khalil ZG, Kalansuriya P, Capon RJ., Mycology 5(3), 2014
PMID: 25379339
Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs).
Wibberg D, Jelonek L, Rupp O, Krober M, Goesmann A, Grosch R, Puhler A, Schluter A., Fungal Biol 118(9-10), 2014
PMID: 25209639
Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8.
Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB., PLoS Genet. 10(5), 2014
PMID: 24810276
Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production.
Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, Lauersen KJ, Blifernez-Klassen O, Kalinowski J, Goesmann A, Mussgnug JH, Kruse O., BMC Genomics 14(), 2013
PMID: 24373495

72 References

Data provided by Europe PubMed Central.

The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression.
Paquin B, Laforest MJ, Forget L, Roewer I, Wang Z, Longcore J, Lang BF., Curr. Genet. 31(5), 1997
PMID: 9162109
Characterization of a new subgroup of Rhizoctonia solani anastomosis group 1 (AG-1-ID), causal agent of a necrotic leaf spot on coffee.
Priyatmojo A, Escopalao VE, Tangonan NG, Pascual CB, Suga H, Kageyama K, Hyakumachi M., Phytopathology 91(11), 2001
PMID: IND23248743
High levels of gene flow and heterozygote excess characterize Rhizoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas.
Rosewich UL, Pettway RE, McDonald BA, Kistler HC., Fungal Genet. Biol. 28(3), 1999
PMID: 10669581
Phylogenetic grouping of cultural types of Rhizoctonia solani AG 2-2 based on ribosomal ITS sequences.
Salazar O, Julian MC, Hyakumachi M, Rubio V., Mycologia 92(3), 2000
PMID: IND22078830
Ribosomal DNA intergenic spacer of indoor wood-decay fungi
Schmidt, Holzforschung 62(), 2008
Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)
Stajich, Proceedings of the National Academy of Sciences of the United States of America 107(26), 2010
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545

Sneh, 1996
AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome.
Stanke M, Tzvetkova A, Morgenstern B., Genome Biol. 7 Suppl 1(), 2006
PMID: 16925833
A note on the neighbor-joining algorithm of Saitou and Nei
Studier, Molecular Biology and Evolution, 1988 5(6), 1988
A probabilistic method for identifying start codons in bacterial genomes.
Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL., Bioinformatics 17(12), 2001
PMID: 11751220
Higher taxa of basidiomycetes: an 18S rRNA gene perspective.
Swann EC, Taylor JW., Mycologia 85(6), 1993
PMID: IND20599207
Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions.
Szczepanowski R, Eikmeyer F, Harfmann J, Blom J, Rogers LM, Top EM, Schluter A., J. Biotechnol. 155(1), 2011
PMID: 21115076
The COG database: an updated version includes eukaryotes.
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA., BMC Bioinformatics 4(), 2003
PMID: 12969510
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L., Nat. Biotechnol. 28(5), 2010
PMID: 20436464
Nucleotide composition of nuclear and mitochondrial deoxyribonucleic acid of fungi
Villa, Journal of Bacterioloy 96(1), 1968
The mitochondrial genome of the Basidiomycete fungus Pleurotus ostreatus (oyster mushroom).
Wang Y, Zeng F, Hon CC, Zhang Y, Leung FC., FEMS Microbiol. Lett. 280(1), 2008
PMID: 18248422

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23280342
PubMed | Europe PMC

Search this title in

Google Scholar