Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides

Zaprasis A, Brill J, Thüring M, Wünsche G, Heun M, Barzantny H, Hoffmann T, Bremer E (2013)
Applied and environmental microbiology 79(2): 576-587.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes.
Publishing Year
ISSN
PUB-ID

Cite this

Zaprasis A, Brill J, Thüring M, et al. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology. 2013;79(2):576-587.
Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., et al. (2013). Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology, 79(2), 576-587.
Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., and Bremer, E. (2013). Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology 79, 576-587.
Zaprasis, A., et al., 2013. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology, 79(2), p 576-587.
A. Zaprasis, et al., “Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides”, Applied and environmental microbiology, vol. 79, 2013, pp. 576-587.
Zaprasis, A., Brill, J., Thüring, M., Wünsche, G., Heun, M., Barzantny, H., Hoffmann, T., Bremer, E.: Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology. 79, 576-587 (2013).
Zaprasis, Adrienne, Brill, Jeanette, Thüring, Marietta, Wünsche, Guido, Heun, Magnus, Barzantny, Helena, Hoffmann, Tamara, and Bremer, Erhard. “Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides”. Applied and environmental microbiology 79.2 (2013): 576-587.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

Functional role of oppA encoding an oligopeptide-binding protein from Lactobacillus salivarius Ren in bile tolerance.
Wang G, Li D, Ma X, An H, Zhai Z, Ren F, Hao Y., J. Ind. Microbiol. Biotechnol. 42(8), 2015
PMID: 25998246
Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis.
Zhang K, Shao H, Cao Q, He MX, Wu B, Feng H., Appl. Microbiol. Biotechnol. 99(4), 2015
PMID: 25582559
Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis.
Zaprasis A, Bleisteiner M, Kerres A, Hoffmann T, Bremer E., Appl. Environ. Microbiol. 81(1), 2015
PMID: 25344233
Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis.
Bashir A, Hoffmann T, Kempf B, Xie X, Smits SH, Bremer E., Microbiology (Reading, Engl.) 160(Pt 10), 2014
PMID: 25012968
Small cationic antimicrobial peptides delocalize peripheral membrane proteins.
Wenzel M, Chiriac AI, Otto A, Zweytick D, May C, Schumacher C, Gust R, Albada HB, Penkova M, Kramer U, Erdmann R, Metzler-Nolte N, Straus SK, Bremer E, Becher D, Brotz-Oesterhelt H, Sahl HG, Bandow JE., Proc. Natl. Acad. Sci. U.S.A. 111(14), 2014
PMID: 24706874
Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective.
Kohlstedt M, Sappa PK, Meyer H, Maaß S, Zaprasis A, Hoffmann T, Becker J, Steil L, Hecker M, van Dijl JM, Lalk M, Mader U, Stulke J, Bremer E, Volker U, Wittmann C., Environ. Microbiol. 16(6), 2014
PMID: 24571712
Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis.
Bashir A, Hoffmann T, Smits SH, Bremer E., Appl. Environ. Microbiol. 80(9), 2014
PMID: 24561588
The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis.
Zaprasis A, Hoffmann T, Stannek L, Gunka K, Commichau FM, Bremer E., J. Bacteriol. 196(3), 2014
PMID: 24142252
Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.
Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, Jurgen B, Albrecht D, Becher D, Lalk M, Evers S, Bongaerts J, Maurer KH, Putzer H, Hecker M, Schweder T, Bremer E., PLoS ONE 8(11), 2013
PMID: 24348917
Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K+ uptake systems.
Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ, Krulwich TA., MBio 4(4), 2013
PMID: 23963175

82 References

Data provided by Europe PubMed Central.

Thermodynamic limits to microbial life at high salt concentrations.
Oren A., Environ. Microbiol. 13(8), 2011
PMID: 21054738
Osmoadaptation in rhizobia: ectoine-induced salt tolerance.
Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T., J. Bacteriol. 176(17), 1994
PMID: 8071195
Bacillus
Logan N, De P., 2009
Ecology and genomics of Bacillus subtilis.
Earl AM, Losick R, Kolter R., Trends Microbiol. 16(6), 2008
PMID: 18467096
From transcriptional landscapes to the identification of biomarkers for robustness.
Abee T, Wels M, de Been M, den Besten H., Microb. Cell Fact. 10 Suppl 1(), 2011
PMID: 21995521

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23144141
PubMed | Europe PMC

Search this title in

Google Scholar