Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms

Differt D, Pfeiffer W, Diesing D (2012)
Applied Physics Letters 101(11).

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Linear and nonlinear internal photoemission in a thin-film metal-insulator-metal heterosystem, i.e., a Ta-TaOx-Ag junction, together with surface reflectivity are mapped with a lateral resolution of better than 5 mu m. The spatial correlation of the different signals and time-resolved internal photoemission spectroscopy reveal excitation mechanisms and ballistic hot carrier injection. The internal photoemission yield variation with Ag layer thickness is quantitatively explained by above-barrier injection. The hot-spot-like behavior of the two-photon induced internal photoemission observed for short pulse excitation is attributed to local field enhancements because of Ag-film thickness reduction and plasmonic effects at structural defects. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752734]
Publishing Year
ISSN
PUB-ID

Cite this

Differt D, Pfeiffer W, Diesing D. Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms. Applied Physics Letters. 2012;101(11).
Differt, D., Pfeiffer, W., & Diesing, D. (2012). Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms. Applied Physics Letters, 101(11).
Differt, D., Pfeiffer, W., and Diesing, D. (2012). Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms. Applied Physics Letters 101.
Differt, D., Pfeiffer, W., & Diesing, D., 2012. Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms. Applied Physics Letters, 101(11).
D. Differt, W. Pfeiffer, and D. Diesing, “Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms”, Applied Physics Letters, vol. 101, 2012.
Differt, D., Pfeiffer, W., Diesing, D.: Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms. Applied Physics Letters. 101, (2012).
Differt, Dominik, Pfeiffer, Walter, and Diesing, D. “Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms”. Applied Physics Letters 101.11 (2012).
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar