Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

Held C, Nattkemper TW, Palmisano R, Wittenberg T (2013)
Journal of Pathology Informatics 4(2): 5.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Publishing Year
ISSN
PUB-ID

Cite this

Held C, Nattkemper TW, Palmisano R, Wittenberg T. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis. Journal of Pathology Informatics. 2013;4(2):5.
Held, C., Nattkemper, T. W., Palmisano, R., & Wittenberg, T. (2013). Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis. Journal of Pathology Informatics, 4(2), 5. doi:10.4103/2153-3539.109831
Held, C., Nattkemper, T. W., Palmisano, R., and Wittenberg, T. (2013). Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis. Journal of Pathology Informatics 4, 5.
Held, C., et al., 2013. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis. Journal of Pathology Informatics, 4(2), p 5.
C. Held, et al., “Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis”, Journal of Pathology Informatics, vol. 4, 2013, pp. 5.
Held, C., Nattkemper, T.W., Palmisano, R., Wittenberg, T.: Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis. Journal of Pathology Informatics. 4, 5 (2013).
Held, Christian, Nattkemper, Tim Wilhelm, Palmisano, Ralf, and Wittenberg, Thomas. “Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis”. Journal of Pathology Informatics 4.2 (2013): 5.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 References

Data provided by Europe PubMed Central.

Digital pathology image analysis: Opportunities and challenges
Madabhushi A., 2009
Histopathological image analysis: a review.
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B., IEEE Rev Biomed Eng 2(), 2009
PMID: 20671804
New developments in digital pathology: from telepathology to virtual pathology laboratory.
Kayser K, Kayser G, Radziszowski D, Oehmann A., Stud Health Technol Inform 105(), 2004
PMID: 15718595
Automatic segmentation of digital micrographs: A survey
Nattkemper TW., 2004
Bioimage informatics: a new category in Bioinformatics.
Peng H, Bateman A, Valencia A, Wren JD., Bioinformatics 28(8), 2012
PMID: 22399678
Open source bioimage informatics for cell biology.
Swedlow JR, Eliceiri KW., Trends Cell Biol. 19(11), 2009
PMID: 19833518
Informatics and quantitative analysis in biological imaging
Swedlow JR, Goldberg I, Brauner E, Sorger PK., 2003
Bisque: a platform for bioimage analysis and management.
Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath BS., Bioinformatics 26(4), 2010
PMID: 20031971
BioIMAX: A Web 2.0 approach for easy exploratory and collaborative access to multivariate bioimage data
Loyek C, Rajpoot NM, Khan M, Nattkemper TW., 2011
CellProfiler: image analysis software for identifying and quantifying cell phenotypes.
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM., Genome Biol. 7(10), 2006
PMID: 17076895
A neural classifier enabling high-throughput topological analysis of lymphocytes in tissue sections.
Nattkemper TW, Ritter HJ, Schubert W., IEEE Trans Inf Technol Biomed 5(2), 2001
PMID: 11420992
A method for linking computed image features to histological semantics in neuropathology.
Lessmann B, Nattkemper TW, Hans VH, Degenhard A., J Biomed Inform 40(6), 2007
PMID: 17698418
Artificial neural networks in pathology and medical laboratories.
Dybowski R, Gant V., Lancet 346(8984), 1995
PMID: 7475664
Visualization of parameter space for image analysis.
Pretorius AJ, Bray MA, Carpenter AE, Ruddle RA., IEEE Trans Vis Comput Graph 17(12), 2011
PMID: 22034361
Image segmentation of cell nuclei based on classification in the color space
Wittenberg T, Becher F, Hensel M, Steckhan DG., 2009
A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels
van M., 1992
A k-means clustering algorithm
Hartigan JA, Wong MA., 1979
Fast image segmentation based on K-Means clustering with histograms in HSV color space
Chen TW, Chen YL, Chien SY., 2008
Applying watershed algorithms to the segmentation of clustered nuclei.
Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F., Cytometry 28(4), 1997
PMID: 9266748
On the convergence of the coordinate descent method for convex differentiable minimization
Luo ZQ, Tseng P., 1992

Goldberg DE., 1989

Export

0 Marked Publications

Open Data PUB

Sources

PMID: 23766941
PubMed | Europe PMC

Search this title in

Google Scholar