Surgery on a pair of transversal manifolds

Bak A, Muranov YV (2012)
Journal of Homotopy and Related Structures 7(2): 255-279.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
In the paper we construct the algebraic surgery theory of a topological space consisting of two manifolds which intersect transversally. Such a space is a basic example of stratified space. For such spaces, we define the notion of a normal map, an s-triangulation, and surgery obstruction groups, and show that these notions can be realized on the level of spectra. We construct commutative braids of exact sequences which relate the new notions to their classical counterparts. We examine the example of a transversal intersection of two real projective spaces and obtain explicit results regarding structure sets in this situation.
Erscheinungsjahr
Zeitschriftentitel
Journal of Homotopy and Related Structures
Band
7
Zeitschriftennummer
2
Seite
255-279
ISSN
eISSN
PUB-ID

Zitieren

Bak A, Muranov YV. Surgery on a pair of transversal manifolds. Journal of Homotopy and Related Structures. 2012;7(2):255-279.
Bak, A., & Muranov, Y. V. (2012). Surgery on a pair of transversal manifolds. Journal of Homotopy and Related Structures, 7(2), 255-279. doi:10.1007/s40062-012-0009-0
Bak, A., and Muranov, Y. V. (2012). Surgery on a pair of transversal manifolds. Journal of Homotopy and Related Structures 7, 255-279.
Bak, A., & Muranov, Y.V., 2012. Surgery on a pair of transversal manifolds. Journal of Homotopy and Related Structures, 7(2), p 255-279.
A. Bak and Y.V. Muranov, “Surgery on a pair of transversal manifolds”, Journal of Homotopy and Related Structures, vol. 7, 2012, pp. 255-279.
Bak, A., Muranov, Y.V.: Surgery on a pair of transversal manifolds. Journal of Homotopy and Related Structures. 7, 255-279 (2012).
Bak, Anthony, and Muranov, Yu. V. “Surgery on a pair of transversal manifolds”. Journal of Homotopy and Related Structures 7.2 (2012): 255-279.