On the Lubensky-Nelson Model of Polymer Translocation through Nanopores

Reimann P, Meyer A, Getfert S (2012)
Biophysical Journal 103(5): 889-897.

Journal Article | Published | English

No fulltext has been uploaded

Author
Abstract
We revisit the one-dimensional stochastic model of an earlier study by D. K. Lubensky and D. R. Nelson for the electrically driven translocation of polynucleotides through alpha-hemolysin pores. We show that the model correctly describes two further important properties of the experimentally observed translocation time distributions, namely their spread (width) and their exponential The resulting overall agreement between theoretical and experimental translocation time distributions is thus very good.
Publishing Year
ISSN
PUB-ID

Cite this

Reimann P, Meyer A, Getfert S. On the Lubensky-Nelson Model of Polymer Translocation through Nanopores. Biophysical Journal. 2012;103(5):889-897.
Reimann, P., Meyer, A., & Getfert, S. (2012). On the Lubensky-Nelson Model of Polymer Translocation through Nanopores. Biophysical Journal, 103(5), 889-897.
Reimann, P., Meyer, A., and Getfert, S. (2012). On the Lubensky-Nelson Model of Polymer Translocation through Nanopores. Biophysical Journal 103, 889-897.
Reimann, P., Meyer, A., & Getfert, S., 2012. On the Lubensky-Nelson Model of Polymer Translocation through Nanopores. Biophysical Journal, 103(5), p 889-897.
P. Reimann, A. Meyer, and S. Getfert, “On the Lubensky-Nelson Model of Polymer Translocation through Nanopores”, Biophysical Journal, vol. 103, 2012, pp. 889-897.
Reimann, P., Meyer, A., Getfert, S.: On the Lubensky-Nelson Model of Polymer Translocation through Nanopores. Biophysical Journal. 103, 889-897 (2012).
Reimann, Peter, Meyer, Andreas, and Getfert, Sebastian. “On the Lubensky-Nelson Model of Polymer Translocation through Nanopores”. Biophysical Journal 103.5 (2012): 889-897.
This data publication is cited in the following publications:
This publication cites the following data publications:

45 References

Data provided by Europe PubMed Central.

DNA in nanopores: counterion condensation and coion depletion.
Rabin Y, Tanaka M., Phys. Rev. Lett. 94(14), 2005
PMID: 15904117
Effective charge and free energy of DNA inside an ion channel
Zhang J., Shklovskii B.I.., 2007
Driven DNA transport into an asymmetric nanometer-scale pore.
Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ., Phys. Rev. Lett. 85(14), 2000
PMID: 11006002
Sequence dependence of DNA translocation through a nanopore.
Luo K, Ala-Nissila T, Ying SC, Bhattacharya A., Phys. Rev. Lett. 100(5), 2008
PMID: 18352434
Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage.
Brun L, Pastoriza-Gallego M, Oukhaled G, Mathe J, Bacri L, Auvray L, Pelta J., Phys. Rev. Lett. 100(15), 2008
PMID: 18518160

AUTHOR UNKNOWN, 0
Giant acceleration of free diffusion by use of tilted periodic potentials.
Reimann P, Van den Broeck C, Linke H, Hanggi P, Rubi JM, Perez-Madrid A., Phys. Rev. Lett. 87(1), 2001
PMID: 11461454
Diffusion in tilted periodic potentials: enhancement, universality, and scaling
Reimann P., Van C., Pérez-Madrid A.., 2002
Nonlinear response theory: transport coefficients for driving fields of arbitrary magnitude
Parris P.E., Kus M., Kenkre V.M.., 1997
Optimal diffusive transport in a tilted periodic potential
Lindner B., Kostur M., Schimansky-Geier L.., 2001
Dynamics of DNA molecules in a membrane channel probed by active control techniques.
Bates M, Burns M, Meller A., Biophys. J. 84(4), 2003
PMID: 12668445
Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge.
Maglia G, Restrepo MR, Mikhailova E, Bayley H., Proc. Natl. Acad. Sci. U.S.A. 105(50), 2008
PMID: 19060213
DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis.
Wang H, Dunning JE, Huang AP, Nyamwanda JA, Branton D., Proc. Natl. Acad. Sci. U.S.A. 101(37), 2004
PMID: 15342914
Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel.
Mathe J, Aksimentiev A, Nelson DR, Schulten K, Meller A., Proc. Natl. Acad. Sci. U.S.A. 102(35), 2005
PMID: 16113083
Determination of RNA orientation during translocation through a biological nanopore.
Butler TZ, Gundlach JH, Troll MA., Biophys. J. 90(1), 2006
PMID: 16214857
DNA translocation and unzipping through a nanopore: some geometrical effects.
Muzard J, Martinho M, Mathe J, Bockelmann U, Viasnoff V., Biophys. J. 98(10), 2010
PMID: 20483325

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23009838
PubMed | Europe PMC

arXiv 1209.1263

Search this title in

Google Scholar