Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors

Wu Z-S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Muellen K (2012)
Advanced Materials 24(37): 5130-5135.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Publishing Year
ISSN
PUB-ID

Cite this

Wu Z-S, Winter A, Chen L, et al. Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials. 2012;24(37):5130-5135.
Wu, Z. - S., Winter, A., Chen, L., Sun, Y., Turchanin, A., Feng, X., & Muellen, K. (2012). Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials, 24(37), 5130-5135.
Wu, Z. - S., Winter, A., Chen, L., Sun, Y., Turchanin, A., Feng, X., and Muellen, K. (2012). Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials 24, 5130-5135.
Wu, Z.-S., et al., 2012. Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials, 24(37), p 5130-5135.
Z.-S. Wu, et al., “Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors”, Advanced Materials, vol. 24, 2012, pp. 5130-5135.
Wu, Z.-S., Winter, A., Chen, L., Sun, Y., Turchanin, A., Feng, X., Muellen, K.: Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials. 24, 5130-5135 (2012).
Wu, Zhong-Shuai, Winter, Andreas, Chen, Long, Sun, Yi, Turchanin, Andrey, Feng, Xinliang, and Muellen, Klaus. “Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors”. Advanced Materials 24.37 (2012): 5130-5135.
This data publication is cited in the following publications:
This publication cites the following data publications:

82 Citations in Europe PMC

Data provided by Europe PubMed Central.

Chemical preparation of graphene materials results in extensive unintentional doping with heteroatoms and metals.
Chua CK, Ambrosi A, Sofer Z, Mackova A, Havranek V, Tomandl I, Pumera M., Chemistry 20(48), 2014
PMID: 25284355
FTO-free counter electrodes for dye-sensitized solar cells using carbon nanosheets synthesised from a polymeric carbon source.
Akbar ZA, Lee JS, Kang J, Joh HI, Lee S, Jang SY., Phys Chem Chem Phys 16(33), 2014
PMID: 25026395
The selective formation of graphene ranging from two-dimensional sheets to three-dimensional mesoporous nanospheres.
Wang J, Jin H, He Y, Lin D, Liu A, Wang S, Wang J., Nanoscale 6(13), 2014
PMID: 24874097
Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors.
Sun L, Fu Y, Tian C, Yang Y, Wang L, Yin J, Ma J, Wang R, Fu H., ChemSusChem 7(6), 2014
PMID: 24692324

49 References

Data provided by Europe PubMed Central.


Zhang, J. Phys. Chem. C 115(), 2011
3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
Choi BG, Yang M, Hong WH, Choi JW, Huh YS., ACS Nano 6(5), 2012
PMID: 22524516
High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets.
Qiu Y, Zhang X, Yang S., Phys Chem Chem Phys 13(27), 2011
PMID: 21670800
Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode.
Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM., ACS Nano 3(7), 2009
PMID: 19489559

Liang, Adv. Mater. 21(), 2009
Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage.
Yang S, Feng X, Ivanovici S, Mullen K., Angew. Chem. Int. Ed. Engl. 49(45), 2010
PMID: 20836109
Graphene-based nanosheets with a sandwich structure.
Yang S, Feng X, Wang L, Tang K, Maier J, Mullen K., Angew. Chem. Int. Ed. Engl. 49(28), 2010
PMID: 20512835

Kawaguchi, Adv. Mater. 9(), 1997
Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions.
Yang S, Feng X, Wang X, Mullen K., Angew. Chem. Int. Ed. Engl. 50(23), 2011
PMID: 21557411
High-power lithium batteries from functionalized carbon-nanotube electrodes.
Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao-Horn Y., Nat Nanotechnol 5(7), 2010
PMID: 20562872
BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction.
Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L., Angew. Chem. Int. Ed. Engl. 51(17), 2012
PMID: 22431416
Vertically aligned BCN nanotubes with high capacitance.
Iyyamperumal E, Wang S, Dai L., ACS Nano 6(6), 2012
PMID: 22639830
Graphene-based ultracapacitors.
Stoller MD, Park S, Zhu Y, An J, Ruoff RS., Nano Lett. 8(10), 2008
PMID: 18788793

Wu, Adv. Funct. Mater. 20(), 2010

Zhang, J. Mater. Chem. 20(), 2010

Zhou, Chem. Mater. 17(), 2005

Barisci, J. Electroanal. Chem. 488(), 2000
Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.
Wu Q, Xu Y, Yao Z, Liu A, Shi G., ACS Nano 4(4), 2010
PMID: 20355733

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22807002
PubMed | Europe PMC

Search this title in

Google Scholar