Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice

Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Rochert AK, Pohl S, Lübke T, Michalski J-C, Kakela R, et al. (2012)
Brain 135(9): 2661-2675.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ; ; ; ; ; ; ; ;
Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as alpha-l-fucosidase, beta-hexosaminidase, alpha-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent neurodegeneration. These lysosomal proteins might be a potential target for a valid therapeutic approach for mucolipidosis II disease.
Publishing Year

Cite this

Kollmann K, Damme M, Markmann S, et al. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. Brain. 2012;135(9):2661-2675.
Kollmann, K., Damme, M., Markmann, S., Morelle, W., Schweizer, M., Hermans-Borgmeyer, I., Rochert, A. K., et al. (2012). Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. Brain, 135(9), 2661-2675. doi:10.1093/brain/aws209
Kollmann, K., Damme, M., Markmann, S., Morelle, W., Schweizer, M., Hermans-Borgmeyer, I., Rochert, A. K., Pohl, S., Lübke, T., Michalski, J. - C., et al. (2012). Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. Brain 135, 2661-2675.
Kollmann, K., et al., 2012. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. Brain, 135(9), p 2661-2675.
K. Kollmann, et al., “Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice”, Brain, vol. 135, 2012, pp. 2661-2675.
Kollmann, K., Damme, M., Markmann, S., Morelle, W., Schweizer, M., Hermans-Borgmeyer, I., Rochert, A.K., Pohl, S., Lübke, T., Michalski, J.-C., Kakela, R., Walkley, S.U., Braulke, T.: Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. Brain. 135, 2661-2675 (2012).
Kollmann, K, Damme, Markus, Markmann, S, Morelle, W, Schweizer, M, Hermans-Borgmeyer, I, Rochert, A K, Pohl, S, Lübke, Torben, Michalski, J-C, Kakela, R, Walkley, S U, and Braulke, T. “Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice”. Brain 135.9 (2012): 2661-2675.
This data publication is cited in the following publications:
This publication cites the following data publications:

23 Citations in Europe PMC

Data provided by Europe PubMed Central.

Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I.
Kuehn SC, Koehne T, Cornils K, Markmann S, Riedel C, Pestka JM, Schweizer M, Baldauf C, Yorgan TA, Krause M, Keller J, Neven M, Breyer S, Stuecker R, Muschol N, Busse B, Braulke T, Fehse B, Amling M, Schinke T., Hum. Mol. Genet. 24(24), 2015
PMID: 26427607
In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.
Varga RE, Khundadze M, Damme M, Nietzsche S, Hoffmann B, Stauber T, Koch N, Hennings JC, Franzka P, Huebner AK, Kessels MM, Biskup C, Jentsch TJ, Qualmann B, Braulke T, Kurth I, Beetz C, Hubner CA., PLoS Genet. 11(8), 2015
PMID: 26284655
Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2.
Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M., Traffic 16(10), 2015
PMID: 26219725
Site-1 protease-activated formation of lysosomal targeting motifs is independent of the lipogenic transcription control.
Klunder S, Heeren J, Markmann S, Santer R, Braulke T, Pohl S., J. Lipid Res. 56(8), 2015
PMID: 26108224
Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting.
Markmann S, Thelen M, Cornils K, Schweizer M, Brocke-Ahmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K., Traffic 16(7), 2015
PMID: 25786328
Mannose 6 phosphorylation of lysosomal enzymes controls B cell functions.
Otomo T, Schweizer M, Kollmann K, Schumacher V, Muschol N, Tolosa E, Mittrucker HW, Braulke T., J. Cell Biol. 208(2), 2015
PMID: 25601403
Autophagy in neuronal cells: general principles and physiological and pathological functions.
Damme M, Suntio T, Saftig P, Eskelinen EL., Acta Neuropathol. 129(3), 2015
PMID: 25367385
Neurologic abnormalities in mouse models of the lysosomal storage disorders mucolipidosis II and mucolipidosis III γ.
Idol RA, Wozniak DF, Fujiwara H, Yuede CM, Ory DS, Kornfeld S, Vogel P., PLoS ONE 9(10), 2014
PMID: 25314316
Granule protein processing and regulated secretion in neutrophils.
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G., Front Immunol 5(), 2014
PMID: 25285096
Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV.
Grishchuk Y, Sri S, Rudinskiy N, Ma W, Stember KG, Cottle MW, Sapp E, Difiglia M, Muzikansky A, Betensky RA, Wong AM, Bacskai BJ, Hyman BT, Kelleher RJ 3rd, Cooper JD, Slaugenhaupt SA., Acta Neuropathol Commun 2(), 2014
PMID: 25200117
Molecular characterization of arylsulfatase G: expression, processing, glycosylation, transport, and activity.
Kowalewski B, Lubke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, Damme M., J. Biol. Chem. 289(40), 2014
PMID: 25135642
A novel mouse model of a patient mucolipidosis II mutation recapitulates disease pathology.
Paton L, Bitoun E, Kenyon J, Priestman DA, Oliver PL, Edwards B, Platt FM, Davies KE., J. Biol. Chem. 289(39), 2014
PMID: 25107912
Systemic accumulation of undigested lysosomal metabolites in an autopsy case of mucolipidosis type II; autophagic dysfunction in cardiomyocyte.
Sato Y, Kobayashi H, Sato S, Shimada Y, Fukuda T, Eto Y, Ohashi T, Ida H., Mol. Genet. Metab. 112(3), 2014
PMID: 24857410
Gene disruption of Mfsd8 in mice provides the first animal model for CLN7 disease.
Damme M, Brandenstein L, Fehr S, Jankowiak W, Bartsch U, Schweizer M, Hermans-Borgmeyer I, Storch S., Neurobiol. Dis. 65(), 2014
PMID: 24423645
Myopathy in Marinesco-Sjogren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology.
Roos A, Buchkremer S, Kollipara L, Labisch T, Gatz C, Zitzelsberger M, Brauers E, Nolte K, Schroder JM, Kirschner J, Jesse CM, Goebel HH, Goswami A, Zimmermann R, Zahedi RP, Senderek J, Weis J., Acta Neuropathol. 127(5), 2014
PMID: 24362440
Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB).
De Pace R, Coutinho MF, Koch-Nolte F, Haag F, Prata MJ, Alves S, Braulke T, Pohl S., Hum. Mutat. 35(3), 2014
PMID: 24375680
A hereditary spastic paraplegia mouse model supports a role of ZFYVE26/SPASTIZIN for the endolysosomal system.
Khundadze M, Kollmann K, Koch N, Biskup C, Nietzsche S, Zimmer G, Hennings JC, Huebner AK, Symmank J, Jahic A, Ilina EI, Karle K, Schols L, Kessels M, Braulke T, Qualmann B, Kurth I, Beetz C, Hubner CA., PLoS Genet. 9(12), 2013
PMID: 24367272
Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II.
Kollmann K, Pestka JM, Kuhn SC, Schone E, Schweizer M, Karkmann K, Otomo T, Catala-Lehnen P, Failla AV, Marshall RP, Krause M, Santer R, Amling M, Braulke T, Schinke T., EMBO Mol Med 5(12), 2013
PMID: 24127423
Ultrastructural analysis of neuronal and non-neuronal lysosomal storage in mucolipidosis type II knock-in mice.
Schweizer M, Markmann S, Braulke T, Kollmann K., Ultrastruct Pathol 37(5), 2013
PMID: 24047352
Glycobiology of cell death: when glycans and lectins govern cell fate.
Lichtenstein RG, Rabinovich GA., Cell Death Differ. 20(8), 2013
PMID: 23703323
Cell biology and function of neuronal ceroid lipofuscinosis-related proteins.
Kollmann K, Uusi-Rauva K, Scifo E, Tyynela J, Jalanko A, Braulke T., Biochim. Biophys. Acta 1832(11), 2013
PMID: 23402926

58 References

Data provided by Europe PubMed Central.

Clinical, biochemical, and ultrastructural studies in a case of chondrodystrophy presenting the I-cell phenotype in tissue culture.
Tondeur M, Vamos-Hurwitz E, Mockel-Pohl S, Dereume JP, Cremer N, Loeb H., J. Pediatr. 79(3), 1971
PMID: 4327937
Comparative pathology of murine mucolipidosis types II and IIIC.
Vogel P, Payne BJ, Read R, Lee WS, Gelfman CM, Kornfeld S., Vet. Pathol. 46(2), 2009
PMID: 19261645
Deficiency of UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients.
Waheed A, Pohlmann R, Hasilik A, von Figura K, van Elsen A, Leroy JG., Biochem. Biophys. Res. Commun. 105(3), 1982
PMID: 6212058
Lysosomal compromise and brain dysfunction: examining the role of neuroaxonal dystrophy.
Walkley SU, Sikora J, Micsenyi M, Davidson C, Dobrenis K., Biochem. Soc. Trans. 38(6), 2010
PMID: 21118103
Secondary lipid accumulation in lysosomal disease.
Walkley SU, Vanier MT., Biochim. Biophys. Acta 1793(4), 2009
PMID: 19111580
Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation.
Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ., Science 328(5984), 2010
PMID: 20430974
Nucleolin: acharan sulfate-binding protein on the surface of cancer cells.
Joo EJ, ten Dam GB, van Kuppevelt TH, Toida T, Linhardt RJ, Kim YS., Glycobiology 15(1), 2005
PMID: 15329357


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 22961545
PubMed | Europe PMC

Search this title in

Google Scholar