Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

Busche T, Silar R, Picmanova M, Patek M, Kalinowski J (2012)
BMC Genomics 13(1).

Download
OA
Journal Article | Published | English
Author
; ; ; ;
Abstract
Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system.
Publishing Year
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Busche T, Silar R, Picmanova M, Patek M, Kalinowski J. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics. 2012;13(1).
Busche, T., Silar, R., Picmanova, M., Patek, M., & Kalinowski, J. (2012). Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics, 13(1).
Busche, T., Silar, R., Picmanova, M., Patek, M., and Kalinowski, J. (2012). Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13.
Busche, T., et al., 2012. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics, 13(1).
T. Busche, et al., “Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum”, BMC Genomics, vol. 13, 2012.
Busche, T., Silar, R., Picmanova, M., Patek, M., Kalinowski, J.: Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics. 13, (2012).
Busche, Tobias, Silar, Radoslav, Picmanova, Martina, Patek, Miroslav, and Kalinowski, Jörn. “Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum”. BMC Genomics 13.1 (2012).
Main File(s)
Access Level
OA Open Access
Last Uploaded
2012-11-12 08:37:21

This data publication is cited in the following publications:
This publication cites the following data publications:

13 Citations in Europe PMC

Data provided by Europe PubMed Central.

Redox regulation by reversible protein S-thiolation in bacteria.
Loi VV, Rossius M, Antelmann H., Front Microbiol 6(), 2015
PMID: 25852656
Thiol-based redox switches in prokaryotes.
Hillion M, Antelmann H., Biol. Chem. 396(5), 2015
PMID: 25720121
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
Si M, Zhang L, Chaudhry MT, Ding W, Xu Y, Chen C, Akbar A, Shen X, Liu SJ., Appl. Environ. Microbiol. 81(8), 2015
PMID: 25681179
Functional characterization of Corynebacterium glutamicum mycothiol S-conjugate amidase.
Si M, Long M, Chaudhry MT, Xu Y, Zhang P, Zhang L, Shen X., PLoS ONE 9(12), 2014
PMID: 25514023
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
Chi BK, Busche T, Van Laer K, Basell K, Becher D, Clermont L, Seibold GM, Persicke M, Kalinowski J, Messens J, Antelmann H., Antioxid. Redox Signal. 20(4), 2014
PMID: 23886307
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Corynebacterium glutamicum promoters: a practical approach.
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350

60 References

Data provided by Europe PubMed Central.

EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
The genes of lepA and hemN form a bicistronic operon in Bacillus subtilis.
Homuth G, Heinemann M, Zuber U, Schumann W., Microbiology (Reading, Engl.) 142 ( Pt 7)(), 1996
PMID: 8757728
Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M., J. Biotechnol. 139(3), 2009
PMID: 19121344
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum
AUTHOR UNKNOWN, 1998
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22943411
PubMed | Europe PMC

Search this title in

Google Scholar