Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically

Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk A-J, Muino JM, Cutri L, Dornelas MC, Angenent GC, et al. (2012)
Plant physiology 159(4): 1511-1523.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Danisman S, van der Wal F, Dhondt S, et al. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology. 2012;159(4):1511-1523.
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A. - J., et al. (2012). Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology, 159(4), 1511-1523. doi:10.1104/pp.112.200303
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A. - J., Muino, J. M., Cutri, L., Dornelas, M. C., et al. (2012). Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology 159, 1511-1523.
Danisman, S., et al., 2012. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology, 159(4), p 1511-1523.
S. Danisman, et al., “Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically”, Plant physiology, vol. 159, 2012, pp. 1511-1523.
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A.-J., Muino, J.M., Cutri, L., Dornelas, M.C., Angenent, G.C., Immink, R.G.H.: Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology. 159, 1511-1523 (2012).
Danisman, Selahattin, van der Wal, Froukje, Dhondt, Stijn, Waites, Richard, de Folter, Stefan, Bimbo, Andrea, van Dijk, Aalt-Jan, Muino, Jose M, Cutri, Lucas, Dornelas, Marcelo C, Angenent, Gerco C, and Immink, Richard G H. “Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically”. Plant physiology 159.4 (2012): 1511-1523.
This data publication is cited in the following publications:
This publication cites the following data publications:

64 Citations in Europe PMC

Data provided by Europe PubMed Central.

Interplay between cell growth and cell cycle in plants.
Sablowski R, Carnier Dornelas M., J Exp Bot 65(10), 2014
PMID: 24218325
Regulation of plant lateral-organ growth by modulating cell number and size.
Hepworth J, Lenhard M., Curr Opin Plant Biol 17(), 2014
PMID: 24507492
Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network.
Espinosa-Soto C, Immink RG, Angenent GC, Alvarez-Buylla ER, de Folter S., BMC Syst Biol 8(), 2014
PMID: 24468197
Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors.
Andriankaja ME, Danisman S, Mignolet-Spruyt LF, Claeys H, Kochanke I, Vermeersch M, De Milde L, De Bodt S, Storme V, Skirycz A, Maurer F, Bauer P, Mühlenbock P, Van Breusegem F, Angenent GC, Immink RG, Inzé D., Plant Mol Biol 85(3), 2014
PMID: 24549883
The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity.
Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PD, Hong JC, Gassmann W., Plant J 78(6), 2014
PMID: 24689742
Functional study of TCP23 in Arabidopsis thaliana during plant development.
Balsemão-Pires E, Andrade LR, Sachetto-Martins G., Plant Physiol Biochem 67(), 2013
PMID: 23562796
The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain.
Valsecchi I, Guittard-Crilat E, Maldiney R, Habricot Y, Lignon S, Lebrun R, Miginiac E, Ruelland E, Jeannette E, Lebreton S., Mol Biosyst 9(9), 2013
PMID: 23760157
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.
Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RG., J Exp Bot 64(18), 2013
PMID: 24129704
GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system.
Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X., J Exp Bot 63(17), 2012
PMID: 23105133

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22718775
PubMed | Europe PMC

Search this title in

Google Scholar