Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically

Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk A-J, Muino JM, Cutri L, Dornelas MC, Angenent GC, et al. (2012)
Plant physiology 159(4): 1511-1523.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.
Erscheinungsjahr
Zeitschriftentitel
Plant physiology
Band
159
Zeitschriftennummer
4
Seite
1511-1523
ISSN
eISSN
PUB-ID

Zitieren

Danisman S, van der Wal F, Dhondt S, et al. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology. 2012;159(4):1511-1523.
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A. - J., et al. (2012). Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology, 159(4), 1511-1523. doi:10.1104/pp.112.200303
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A. - J., Muino, J. M., Cutri, L., Dornelas, M. C., et al. (2012). Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology 159, 1511-1523.
Danisman, S., et al., 2012. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology, 159(4), p 1511-1523.
S. Danisman, et al., “Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically”, Plant physiology, vol. 159, 2012, pp. 1511-1523.
Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A.-J., Muino, J.M., Cutri, L., Dornelas, M.C., Angenent, G.C., Immink, R.G.H.: Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant physiology. 159, 1511-1523 (2012).
Danisman, Selahattin, van der Wal, Froukje, Dhondt, Stijn, Waites, Richard, de Folter, Stefan, Bimbo, Andrea, van Dijk, Aalt-Jan, Muino, Jose M, Cutri, Lucas, Dornelas, Marcelo C, Angenent, Gerco C, and Immink, Richard G H. “Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically”. Plant physiology 159.4 (2012): 1511-1523.

85 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Magnaporthe oryzae Induces the Expression of a MicroRNA to Suppress the Immune Response in Rice.
Zhang X, Bao Y, Shan D, Wang Z, Song X, Wang Z, Wang J, He L, Wu L, Zhang Z, Niu D, Jin H, Zhao H., Plant Physiol 177(1), 2018
PMID: 29549093
Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis.
van Es SW, Silveira SR, Rocha DI, Bimbo A, Martinelli AP, Dornelas MC, Angenent GC, Immink RGH., Plant J 94(5), 2018
PMID: 29570883
LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber.
Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C, Zhang X, Weng Y., Plant J (), 2018
PMID: 29901823
The MicroRNA319d/TCP10 Node Regulates the Common Bean - Rhizobia Nitrogen-Fixing Symbiosis.
Martín-Rodríguez JÁ, Leija A, Formey D, Hernández G., Front Plant Sci 9(), 2018
PMID: 30147704
Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development.
Meng X, Zhang P, Chen Q, Wang J, Chen M., BMC Genomics 19(1), 2018
PMID: 30103673
GhTCP19 transcription factor regulates corm dormancy release by repressing GhNCED expression in Gladiolus.
Wu J, Wu W, Liang J, Jin Y, Gazzarrini S, He J, Yi M., Plant Cell Physiol (), 2018
PMID: 30192973
An effector of apple proliferation phytoplasma targets TCP transcription factors-a generalized virulence strategy of phytoplasma?
Janik K, Mithöfer A, Raffeiner M, Stellmach H, Hause B, Schlink K., Mol Plant Pathol 18(3), 2017
PMID: 27037957
Evolution and Expression Patterns of TCP Genes in Asparagales.
Madrigal Y, Alzate JF, Pabón-Mora N., Front Plant Sci 8(), 2017
PMID: 28144250
Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'.
Wang J, Wang H, Ding L, Song A, Shen F, Jiang J, Chen S, Chen F., Plant Mol Biol 93(6), 2017
PMID: 28108965
Interacting TCP and NLP transcription factors control plant responses to nitrate availability.
Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, Crawford NM., Proc Natl Acad Sci U S A 114(9), 2017
PMID: 28202720
Jasmonate signaling and manipulation by pathogens and insects.
Zhang L, Zhang F, Melotto M, Yao J, He SY., J Exp Bot 68(6), 2017
PMID: 28069779
Evolving Tale of TCPs: New Paradigms and Old Lacunae.
Dhaka N, Bhardwaj V, Sharma MK, Sharma R., Front Plant Sci 8(), 2017
PMID: 28421104
Transcriptional events defining plant immune responses.
Birkenbihl RP, Liu S, Somssich IE., Curr Opin Plant Biol 38(), 2017
PMID: 28458046
FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture.
Bemer M, van Mourik H, Muiño JM, Ferrándiz C, Kaufmann K, Angenent GC., J Exp Bot 68(13), 2017
PMID: 28586421
Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs.
Shen Y, Sun S, Hua S, Shen E, Ye CY, Cai D, Timko MP, Zhu QH, Fan L., Plant J 91(5), 2017
PMID: 28544196
The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis.
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, Angenent GC, Boutilier K., Plant Physiol 175(2), 2017
PMID: 28830937
Genome-Wide Identification and Characterization of BrrTCP Transcription Factors in Brassica rapa ssp. rapa.
Du J, Hu S, Yu Q, Wang C, Yang Y, Sun H, Yang Y, Sun X., Front Plant Sci 8(), 2017
PMID: 28955373
iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.).
Zheng X, Fan S, Wei H, Tao C, Ma Q, Ma Q, Zhang S, Li H, Pang C, Yu S., Int J Mol Sci 18(9), 2017
PMID: 28926933
Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade.
van Mourik H, van Dijk ADJ, Stortenbeker N, Angenent GC, Bemer M., BMC Plant Biol 17(1), 2017
PMID: 29258424
The Arabidopsis immune regulator SRFR1 dampens defences against herbivory by Spodoptera exigua and parasitism by Heterodera schachtii.
Nguyen PD, Pike S, Wang J, Nepal Poudel A, Heinz R, Schultz JC, Koo AJ, Mitchum MG, Appel HM, Gassmann W., Mol Plant Pathol 17(4), 2016
PMID: 26310916
TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis.
He Z, Zhao X, Kong F, Zuo Z, Liu X., J Exp Bot 67(3), 2016
PMID: 26596765
Redox regulation in shoot growth, SAM maintenance and flowering.
Schippers JH, Foyer CH, van Dongen JT., Curr Opin Plant Biol 29(), 2016
PMID: 26799134
Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.
Pires ND, Bemer M, Müller LM, Baroux C, Spillane C, Grossniklaus U., PLoS Genet 12(1), 2016
PMID: 26811909
miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo.
Sattar S, Addo-Quaye C, Thompson GA., Plant Cell Environ 39(6), 2016
PMID: 26437210
The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata.
Pascual J, Alegre S, Nagler M, Escandón M, Annacondia ML, Weckwerth W, Valledor L, Cañal MJ., J Proteomics 143(), 2016
PMID: 26961940
Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes.
Ye YJ, Xiao YY, Han YC, Shan W, Fan ZQ, Xu QG, Kuang JF, Lu WJ, Lakshmanan P, Chen JY., Sci Rep 6(), 2016
PMID: 27004441
Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus.
Shi P, Guy KM, Wu W, Fang B, Yang J, Zhang M, Hu Z., BMC Plant Biol 16(), 2016
PMID: 27072931
Transcriptional and Post-transcriptional Modulation of SQU and KEW Activities in the Control of Dorsal-Ventral Asymmetric Flower Development in Lotus japonicus.
Xu Z, Cheng K, Li X, Yang J, Xu S, Cao X, Hu X, Xie W, Yuan L, Ambrose M, Chen G, Mi H, Luo D., Mol Plant 9(5), 2016
PMID: 26854849
Express yourself: Transcriptional regulation of plant innate immunity.
Garner CM, Kim SH, Spears BJ, Gassmann W., Semin Cell Dev Biol 56(), 2016
PMID: 27174437
SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth.
Favero DS, Jacques CN, Iwase A, Le KN, Zhao J, Sugimoto K, Neff MM., Plant Physiol 171(4), 2016
PMID: 27342309
Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice.
Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y, Zheng L, Wei J, Du Z, Zhang A, Miao H, Li Y, Wu Z, Wu J., Mol Plant 9(9), 2016
PMID: 27381440
Arabidopsis JINGUBANG Is a Negative Regulator of Pollen Germination That Prevents Pollination in Moist Environments.
Ju Y, Guo L, Cai Q, Ma F, Zhu QY, Zhang Q, Sodmergen., Plant Cell 28(9), 2016
PMID: 27468890
Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris.
Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, Yeh CM, Mitsuda N, Ohme-Takagi M, Liu ZJ, Tsai WC., J Exp Bot 67(17), 2016
PMID: 27543606
LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.
Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP, Wu SH., Nat Commun 7(), 2016
PMID: 27734958
Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.
Thongkum M, Burns P, Bhunchoth A, Warin N, Chatchawankanphanich O, van Doorn WG., J Plant Physiol 176(), 2015
PMID: 25590685
Auxin and physical constraint exerted by the perianth promote androgynophore bending in Passiflora mucronata L. (Passifloraceae).
Rocha DI, Monte Bello CC, Sobol S, Samach A, Dornelas MC., Plant Biol (Stuttg) 17(3), 2015
PMID: 25524599
Leaf responses to mild drought stress in natural variants of Arabidopsis.
Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D., Plant Physiol 167(3), 2015
PMID: 25604532
To grow old: regulatory role of ethylene and jasmonic acid in senescence.
Kim J, Chang C, Tucker ML., Front Plant Sci 6(), 2015
PMID: 25688252
TCP three-way handshake: linking developmental processes with plant immunity.
Lopez JA, Sun Y, Blair PB, Mukhtar MS., Trends Plant Sci 20(4), 2015
PMID: 25655280
Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis.
Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G., Genome Biol 16(), 2015
PMID: 25853185
TCP24 modulates secondary cell wall thickening and anther endothecium development.
Wang H, Mao Y, Yang J, He Y., Front Plant Sci 6(), 2015
PMID: 26157444
Transcriptional networks in leaf senescence.
Schippers JH., Curr Opin Plant Biol 27(), 2015
PMID: 26190740
Size control in plants--lessons from leaves and flowers.
Czesnick H, Lenhard M., Cold Spring Harb Perspect Biol 7(8), 2015
PMID: 26238357
Living to Die and Dying to Live: The Survival Strategy behind Leaf Senescence.
Schippers JH, Schmidt R, Wagstaff C, Jing HC., Plant Physiol 169(2), 2015
PMID: 26276844
Interplay between cell growth and cell cycle in plants.
Sablowski R, Carnier Dornelas M., J Exp Bot 65(10), 2014
PMID: 24218325
Regulation of plant lateral-organ growth by modulating cell number and size.
Hepworth J, Lenhard M., Curr Opin Plant Biol 17(), 2014
PMID: 24507492
Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network.
Espinosa-Soto C, Immink RG, Angenent GC, Alvarez-Buylla ER, de Folter S., BMC Syst Biol 8(), 2014
PMID: 24468197
Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors.
Andriankaja ME, Danisman S, Mignolet-Spruyt LF, Claeys H, Kochanke I, Vermeersch M, De Milde L, De Bodt S, Storme V, Skirycz A, Maurer F, Bauer P, Mühlenbock P, Van Breusegem F, Angenent GC, Immink RG, Inzé D., Plant Mol Biol 85(3), 2014
PMID: 24549883
The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity.
Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PD, Hong JC, Gassmann W., Plant J 78(6), 2014
PMID: 24689742
Identification, cloning and characterization of the tomato TCP transcription factor family.
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, de Maagd RA., BMC Plant Biol 14(), 2014
PMID: 24903607
Global transcriptomics identification and analysis of transcriptional factors in different tissues of the paper mulberry.
Xianjun P, Yucheng W, Ruiping H, Meiling Z, Shihua S., BMC Plant Biol 14(), 2014
PMID: 25213425
Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway.
Guan P, Wang R, Nacry P, Breton G, Kay SA, Pruneda-Paz JL, Davani A, Crawford NM., Proc Natl Acad Sci U S A 111(42), 2014
PMID: 25288754
Genomewide analysis of TCP transcription factor gene family in Malus domestica.
Xu R, Sun P, Jia F, Lu L, Li Y, Zhang S, Huang J., J Genet 93(3), 2014
PMID: 25572232
A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2.
Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O., Plant Physiol 161(4), 2013
PMID: 23424248
Functional study of TCP23 in Arabidopsis thaliana during plant development.
Balsemão-Pires E, Andrade LR, Sachetto-Martins G., Plant Physiol Biochem 67(), 2013
PMID: 23562796
The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation.
Wang MY, Zhao PM, Cheng HQ, Han LB, Wu XM, Gao P, Wang HY, Yang CL, Zhong NQ, Zuo JR, Xia GX., Plant Physiol 162(3), 2013
PMID: 23715527
A role for APETALA1/fruitfull transcription factors in tomato leaf development.
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N., Plant Cell 25(6), 2013
PMID: 23771895
The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain.
Valsecchi I, Guittard-Crilat E, Maldiney R, Habricot Y, Lignon S, Lebrun R, Miginiac E, Ruelland E, Jeannette E, Lebreton S., Mol Biosyst 9(9), 2013
PMID: 23760157
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.
Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RG., J Exp Bot 64(18), 2013
PMID: 24129704
GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system.
Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X., J Exp Bot 63(17), 2012
PMID: 23105133

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22718775
PubMed | Europe PMC

Suchen in

Google Scholar