Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants

Siedler S, Lindner S, Bringer S, Wendisch VF, Bott M (2013)
Applied Microbiology Biotechnology 97(1): 143-152.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
Applied Microbiology Biotechnology
Band
97
Zeitschriftennummer
1
Seite
143-152
ISSN
eISSN
PUB-ID

Zitieren

Siedler S, Lindner S, Bringer S, Wendisch VF, Bott M. Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants. Applied Microbiology Biotechnology. 2013;97(1):143-152.
Siedler, S., Lindner, S., Bringer, S., Wendisch, V. F., & Bott, M. (2013). Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants. Applied Microbiology Biotechnology, 97(1), 143-152. doi:10.1007/s00253-012-4314-7
Siedler, S., Lindner, S., Bringer, S., Wendisch, V. F., and Bott, M. (2013). Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants. Applied Microbiology Biotechnology 97, 143-152.
Siedler, S., et al., 2013. Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants. Applied Microbiology Biotechnology, 97(1), p 143-152.
S. Siedler, et al., “Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants”, Applied Microbiology Biotechnology, vol. 97, 2013, pp. 143-152.
Siedler, S., Lindner, S., Bringer, S., Wendisch, V.F., Bott, M.: Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants. Applied Microbiology Biotechnology. 97, 143-152 (2013).
Siedler, Solvej, Lindner, Steffen, Bringer, Stephanie, Wendisch, Volker F., and Bott, Michael. “Reductive whole-cell biotransformation with *Corynebacterium glutamicum*: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using *pfkA* and *gapA* deletion mutants”. Applied Microbiology Biotechnology 97.1 (2013): 143-152.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis.
Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q, Zhao G., Crit Rev Biotechnol 37(7), 2017
PMID: 28078904
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction.
Aslan S, Noor E, Bar-Even A., Biochem J 474(23), 2017
PMID: 29146872
Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
Ma W, Wang J, Li Y, Hu X, Shi F, Wang X., Biotechnol Appl Biochem 63(6), 2016
PMID: 27010514
Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
Nguyen AQ, Schneider J, Reddy GK, Wendisch VF., Metabolites 5(2), 2015
PMID: 25919117
Metabolic engineering of Escherichia coli to enhance acetol production from glycerol.
Yao R, Liu Q, Hu H, Wood TK, Zhang X., Appl Microbiol Biotechnol 99(19), 2015
PMID: 26078109
Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism.
Rui B, Yi Y, Shen T, Zheng M, Zhou W, Du H, Fan Y, Wang Y, Zhang Z, Xu S, Liu Z, Wen H, Xie X., PLoS One 10(6), 2015
PMID: 26086807
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte S, Wendisch VF., Bioorg Med Chem 22(20), 2014
PMID: 24894767

56 References

Daten bereitgestellt von Europe PubMed Central.


S, J Gen Appl Microbiol 13(3), 1967
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering.
Chemler JA, Fowler ZL, McHugh KP, Koffas MA., Metab. Eng. 12(2), 2009
PMID: 19628048

AUTHOR UNKNOWN, 2005
NADPH regeneration by glucose dehydrogenase from Gluconobacter scleroides for l-leucovorin synthesis.
Eguchi T, Kuge Y, Inoue K, Yoshikawa N, Mochida K, Uwajima T., Biosci. Biotechnol. Biochem. 56(5), 1992
PMID: 1368340
Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli.
Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH., Biotechnol. Bioeng. 108(3), 2010
PMID: 21246504
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Plasmid transformation of Escherichia coli and other bacteria.
Hanahan D, Jessee J, Bloom FR., Meth. Enzymol. 204(), 1991
PMID: 1943786
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(4), 2004
PMID: 16179801
Whole organism biocatalysis.
Ishige T, Honda K, Shimizu S., Curr Opin Chem Biol 9(2), 2005
PMID: 15811802
Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation.
Jojima T, Fujii M, Mori E, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 87(1), 2010
PMID: 20217078
Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
Kabus A, Niebisch A, Bott M., Appl. Environ. Microbiol. 73(3), 2006
PMID: 17142369
D: -Mannitol formation from D: -glucose in a whole-cell biotransformation with recombinant Escherichia coli.
Kaup B, Bringer-Meyer S, Sahm H., Appl. Microbiol. Biotechnol. 69(4), 2005
PMID: 15841369
Metabolic engineering of glutamate production.
Kimura E., Adv. Biochem. Eng. Biotechnol. 79(), 2003
PMID: 12523388
The oxidative pentose phosphate pathway: structure and organisation.
Kruger NJ, von Schaewen A., Curr. Opin. Plant Biol. 6(3), 2003
PMID: 12753973
Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum.
Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF., Appl. Microbiol. Biotechnol. 87(2), 2010
PMID: 20379711
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Kramer R, Wendisch VF., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21478323
Glycerol-3-phosphatase of Corynebacterium glutamicum.
Lindner SN, Meiswinkel TM, Panhorst M, Youn JW, Wiefel L, Wendisch VF., J. Biotechnol. 159(3), 2012
PMID: 22353596
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
Litsanov B, Kabus A, Brocker M, Bott M., Microb Biotechnol 5(1), 2011
PMID: 22018023

AUTHOR UNKNOWN, 1972
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022
Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.
Omumasaba CA, Okai N, Inui M, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(2), 2004
PMID: 15925900
Advances in biocatalytic synthesis of pharmaceutical intermediates.
Panke S, Wubbolts M., Curr Opin Chem Biol 9(2), 2005
PMID: 15811804
Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum.
Park SY, Kim HK, Yoo SK, Oh TK, Lee JK., FEMS Microbiol. Lett. 188(2), 2000
PMID: 10913707
Biotechnological manufacture of lysine.
Pfefferle W, Mockel B, Bathe B, Marx A., Adv. Biochem. Eng. Biotechnol. 79(), 2003
PMID: 12523389

AUTHOR UNKNOWN, 2001
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Engineering Corynebacterium glutamicum for isobutanol production.
Smith KM, Cho KM, Liao JC., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20376637
Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.
Stabler N, Oikawa T, Bott M, Eggeling L., J. Bacteriol. 193(7), 2011
PMID: 21257776
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505

AUTHOR UNKNOWN, 0
Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.
Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H., Appl. Environ. Microbiol. 78(12), 2012
PMID: 22504802

A, 2005
Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives.
Yun JY, Lee JE, Yang KM, Cho S, Kim A, Kwon YU, Kwon YE, Park JB., Bioprocess Biosyst Eng 35(1-2), 2011
PMID: 21909677

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22851018
PubMed | Europe PMC

Suchen in

Google Scholar