Magnetoresistive-based real-time cell phagocytosis monitoring

Shoshi A, Schotter J, Schroeder P, Milnera M, Ertl P, Charwat V, Purtscher M, Heer R, Eggeling M, Reiss G, Brueckl H (2012)
Biosensors and Bioelectronics 36(1): 116-122.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ;
Abstract
The uptake of large particles by cells (phagocytosis) is an important factor in cell biology and also plays a major role in biomedical applications. So far, most methods for determining the phagocytic properties rely on cell-culture incubation and end-point detection schemes. Here, we present a lab-on-a-chip system for real-time monitoring of magnetic particle uptake by human fibroblast (NHDF) cells. It is based on recording the time evolution of the average position and distribution of magnetic particles during phagocytosis by giant-magnetoresistive (GMR) type sensors. We employ particles with a mean diameter of 1.2 mu m and characterize their phagocytosis-relevant properties. Our experiments at physiological conditions reveal a cellular uptake rate of 45 particles per hour and show that phagocytosis reaches saturation after an average uptake time of 27.7 h. Moreover, reference phagocytosis experiments at 4 degrees C are carried out to mimic environmental or disease related inhibition of the phagocytic behavior, and our measurements clearly show that we are able to distinguish between cell-membrane adherent and phagocytosed magnetic particles. Besides the demonstrated real-time monitoring of phagocytosis mechanisms, additional nano-biointerface studies can be realized, including on-chip cell adhesion/spreading as well as cell migration, attachment and detachment dynamics. This versatility shows the potential of our approach for providing a multifunctional platform for on-chip cell analysis. (C) 2012 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Shoshi A, Schotter J, Schroeder P, et al. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosensors and Bioelectronics. 2012;36(1):116-122.
Shoshi, A., Schotter, J., Schroeder, P., Milnera, M., Ertl, P., Charwat, V., Purtscher, M., et al. (2012). Magnetoresistive-based real-time cell phagocytosis monitoring. Biosensors and Bioelectronics, 36(1), 116-122. doi:10.1016/j.bios.2012.04.002
Shoshi, A., Schotter, J., Schroeder, P., Milnera, M., Ertl, P., Charwat, V., Purtscher, M., Heer, R., Eggeling, M., Reiss, G., et al. (2012). Magnetoresistive-based real-time cell phagocytosis monitoring. Biosensors and Bioelectronics 36, 116-122.
Shoshi, A., et al., 2012. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosensors and Bioelectronics, 36(1), p 116-122.
A. Shoshi, et al., “Magnetoresistive-based real-time cell phagocytosis monitoring”, Biosensors and Bioelectronics, vol. 36, 2012, pp. 116-122.
Shoshi, A., Schotter, J., Schroeder, P., Milnera, M., Ertl, P., Charwat, V., Purtscher, M., Heer, R., Eggeling, M., Reiss, G., Brueckl, H.: Magnetoresistive-based real-time cell phagocytosis monitoring. Biosensors and Bioelectronics. 36, 116-122 (2012).
Shoshi, Alban, Schotter, J., Schroeder, P., Milnera, M., Ertl, P., Charwat, V., Purtscher, M., Heer, R., Eggeling, M., Reiss, Günter, and Brueckl, H. “Magnetoresistive-based real-time cell phagocytosis monitoring”. Biosensors and Bioelectronics 36.1 (2012): 116-122.
This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

Recent advances and future applications of microfluidic live-cell microarrays.
Rothbauer M, Wartmann D, Charwat V, Ertl P., Biotechnol. Adv. 33(6 Pt 1), 2015
PMID: 26133396
Lab-on-a-chip technologies for stem cell analysis.
Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G., Trends Biotechnol. 32(5), 2014
PMID: 24726257
Wheatstone bridge giant-magnetoresistance based cell counter.
Lee CP, Lai MF, Huang HT, Lin CW, Wei ZH., Biosens Bioelectron 57(), 2014
PMID: 24534580

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22560105
PubMed | Europe PMC

Search this title in

Google Scholar