A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii

Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, et al. (2012)
THE PLANT CELL 24(7): 2992-3008.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue- and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Beel B, Prager K, Spexard M, et al. A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL. 2012;24(7):2992-3008.
Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., et al. (2012). A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL, 24(7), 2992-3008. doi:10.1105/tpc.112.098947
Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., Dewez, D., Ikoma, D., Grossman, A. R., et al. (2012). A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL 24, 2992-3008.
Beel, B., et al., 2012. A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL, 24(7), p 2992-3008.
B. Beel, et al., “A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii”, THE PLANT CELL, vol. 24, 2012, pp. 2992-3008.
Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., Dewez, D., Ikoma, D., Grossman, A.R., Kottke, T., Mittag, M.: A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL. 24, 2992-3008 (2012).
Beel, Benedikt, Prager, Katja, Spexard, Meike, Sasso, Severin, Weiss, Daniel, Müller, Nico, Heinnickel, Mark, Dewez, David, Ikoma, Danielle, Grossman, Arthur R, Kottke, Tilman, and Mittag, Maria. “A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii”. THE PLANT CELL 24.7 (2012): 2992-3008.
This data publication is cited in the following publications:
This publication cites the following data publications:

35 Citations in Europe PMC

Data provided by Europe PubMed Central.

Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells.
Aiyar P, Schaeme D, Garcia-Altares M, Carrasco Flores D, Dathe H, Hertweck C, Sasso S, Mittag M., Nat Commun 8(1), 2017
PMID: 29170415
The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells.
Pashkovskiy PP, Soshinkova TN, Korolkova DV, Kartashov AV, Zlobin IE, Lyubimov VY, Kreslavski VD, Kuznetsov VV., Photosyn. Res. (), 2017
PMID: 29071562
Evolution of photoperiod sensing in plants and algae.
Serrano-Bueno G, Romero-Campero FJ, Lucas-Reina E, Romero JM, Valverde F., Curr. Opin. Plant Biol. 37(), 2017
PMID: 28391047
CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas.
Kinoshita A, Niwa Y, Onai K, Yamano T, Fukuzawa H, Ishiura M, Matsuo T., PLoS Genet. 13(3), 2017
PMID: 28333924
Algal light sensing and photoacclimation in aquatic environments.
Duanmu D, Rockwell NC, Lagarias JC., Plant Cell Environ. 40(11), 2017
PMID: 28245058
Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADH(o) Accumulation Correlates with Biological Activity.
Procopio M, Link J, Engle D, Witczak J, Ritz T, Ahmad M., Front Plant Sci 7(), 2016
PMID: 27446119
The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light.
Garcia-Esquivel M, Esquivel-Naranjo EU, Hernandez-Onate MA, Ibarra-Laclette E, Herrera-Estrella A., Fungal Biol 120(4), 2016
PMID: 27020152
Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens.
Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S., Plant Signal Behav 11(1), 2016
PMID: 26645746

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22773746
PubMed | Europe PMC

Search this title in

Google Scholar