Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties

Raghavan R, Bechelany M, Parlinska M, Frey D, Mook WM, Beyer A, Michler J, Utke I (2012)
Applied Physics Letters 100(19).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
We report on a comprehensive structural and nanoindentation study of nanolaminates of Al2O3 and ZnO synthesized by atomic layer deposition (ALD). By reducing the bilayer thickness from 50 nm to below 1 nm, the nanocrystal size could be controlled in the nanolaminate structure. The softer and more compliant response of the multilayers as compared to the single layers of Al2O3 and ZnO is attributed to the structural change from nanocrystalline to amorphous at smaller bilayer thicknesses. It is also shown that ALD is a unique technique for studying the inverse Hall-Petch softening mechanism (E. Voce and D. Tabor, J. Inst. Metals 79(12), 465 (1951)) related to grain size effects in nanomaterials. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711767]
Publishing Year
ISSN
PUB-ID

Cite this

Raghavan R, Bechelany M, Parlinska M, et al. Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Applied Physics Letters. 2012;100(19).
Raghavan, R., Bechelany, M., Parlinska, M., Frey, D., Mook, W. M., Beyer, A., Michler, J., et al. (2012). Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Applied Physics Letters, 100(19).
Raghavan, R., Bechelany, M., Parlinska, M., Frey, D., Mook, W. M., Beyer, A., Michler, J., and Utke, I. (2012). Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Applied Physics Letters 100.
Raghavan, R., et al., 2012. Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Applied Physics Letters, 100(19).
R. Raghavan, et al., “Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties”, Applied Physics Letters, vol. 100, 2012.
Raghavan, R., Bechelany, M., Parlinska, M., Frey, D., Mook, W.M., Beyer, A., Michler, J., Utke, I.: Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties. Applied Physics Letters. 100, (2012).
Raghavan, R., Bechelany, M., Parlinska, M., Frey, D., Mook, W. M., Beyer, André, Michler, J., and Utke, I. “Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties”. Applied Physics Letters 100.19 (2012).
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar