Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly

Liang P, Heitwerth J, Kern R, Kurtz R, Egelhaaf M (2012)
Journal of Neurophysiology 107(12): 3446-3457.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
Abstract / Bemerkung
Three motion-sensitive key elements of a neural circuit, presumably involved in processing object and distance information, were analyzed with optic flow sequences as experienced by blowflies in a three-dimensional environment. This optic flow is largely shaped by the blowfly's saccadic flight and gaze strategy, which separates translational flight segments from fast saccadic rotations. By modifying this naturalistic optic flow, all three analyzed neurons could be shown to respond during the intersaccadic intervals not only to nearby objects but also to changes in the distance to background structures. In the presence of strong background motion, the three types of neuron differ in their sensitivity for object motion. Object-induced response increments are largest in FD1, a neuron long known to respond better to moving objects than to spatially extended motion patterns, but weakest in VCH, a neuron that integrates wide-field motion from both eyes and, by inhibiting the FD1 cell, is responsible for its object preference. Small but significant object-induced response increments are present in HS cells, which serve both as a major input neuron of VCH and as output neurons of the visual system. In both HS and FD1, intersaccadic background responses decrease with increasing distance to the animal, although much more prominently in FD1. This strong dependence of FD1 on background distance is concluded to be the consequence of the activity of VCH that dramatically increases its activity and, thus, its inhibitory strength with increasing distance.
Erscheinungsjahr
Zeitschriftentitel
Journal of Neurophysiology
Band
107
Zeitschriftennummer
12
Seite
3446-3457
ISSN
eISSN
PUB-ID

Zitieren

Liang P, Heitwerth J, Kern R, Kurtz R, Egelhaaf M. Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly. Journal of Neurophysiology. 2012;107(12):3446-3457.
Liang, P., Heitwerth, J., Kern, R., Kurtz, R., & Egelhaaf, M. (2012). Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly. Journal of Neurophysiology, 107(12), 3446-3457. doi:10.1152/jn.00530.2011
Liang, P., Heitwerth, J., Kern, R., Kurtz, R., and Egelhaaf, M. (2012). Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly. Journal of Neurophysiology 107, 3446-3457.
Liang, P., et al., 2012. Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly. Journal of Neurophysiology, 107(12), p 3446-3457.
P. Liang, et al., “Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly”, Journal of Neurophysiology, vol. 107, 2012, pp. 3446-3457.
Liang, P., Heitwerth, J., Kern, R., Kurtz, R., Egelhaaf, M.: Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly. Journal of Neurophysiology. 107, 3446-3457 (2012).
Liang, Pei, Heitwerth, Jochen, Kern, Roland, Kurtz, Rafael, and Egelhaaf, Martin. “Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly”. Journal of Neurophysiology 107.12 (2012): 3446-3457.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2012-07-26T19:32:54Z

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.
Lee YJ, Jönsson HO, Nordström K., PLoS One 10(5), 2015
PMID: 25955416
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA., J Exp Biol 217(pt 4), 2014
PMID: 24198267
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Object tracking in motion-blind flies.
Bahl A, Ammer G, Schilling T, Borst A., Nat Neurosci 16(6), 2013
PMID: 23624513
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

79 References

Daten bereitgestellt von Europe PubMed Central.

The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc. Natl. Acad. Sci. U.S.A. 100(19), 2003
PMID: 12947039

Dahmen, 2000

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Egelhaaf, 2006

AUTHOR UNKNOWN, 0
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651

Egelhaaf, 1993
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Single visual neurons code opposing motion independent of direction.
Frost BJ, Nakayama K., Science 220(4598), 1983
PMID: 6836313
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276

Hausen, Z Naturforsch 31(), 1976

Hausen, Verh Dt Zool Ges 74(), 1981

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977

AUTHOR UNKNOWN, 0
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
Perception of self-motion from visual flow.
Lappe M, Bremmer F, van den Berg AV ., Trends Cogn. Sci. (Regul. Ed.) 3(9), 1999
PMID: 10461195
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Cortical area MSTd combines visual cues to represent 3-D self-movement.
Logan DJ, Duffy CJ., Cereb. Cortex 16(10), 2005
PMID: 16339087

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683

AUTHOR UNKNOWN, 0

Nordström, Curr Opin Neurobiol (), 0
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Small object detection neurons in female hoverflies.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 273(1591), 2006
PMID: 16720393
Egomotion and relative depth map from optical flow.
Prazdny K., Biol Cybern 36(2), 1980
PMID: 7353067
Figure-ground segregation by motion contrast and by luminance contrast.
Regan D, Beverley KI., J Opt Soc Am A 1(5), 1984
PMID: 6726491

AUTHOR UNKNOWN, 0
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694

AUTHOR UNKNOWN, 0
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060

van, J Exp Biol 202(), 1999

AUTHOR UNKNOWN, 0
Optic flow is used to control human walking.
Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S., Nat. Neurosci. 4(2), 2001
PMID: 11175884

Wehrhahn, 1985

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22423002
PubMed | Europe PMC

Suchen in

Google Scholar