Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection

Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012)
Plant Physiology 159(1): 501-516.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
RAC/ROP proteins (rho-related GTPases of plants) are plant-specific small G proteins that function as molecular switches within elementary signal transduction pathways, including the regulation of reactive oxygen species (ROS) generation during early microbial infection via the activation of NADPH oxidase homologs of plants termed RBOH (for respiratory burst oxidase homolog). We investigated the role of Medicago truncatula Jemalong A17 small GTPase MtROP9, orthologous to Medicago sativa Rac1, via an RNA interference silencing approach. Composite M. truncatula plants (MtROP9i) whose roots have been transformed by Agrobacterium rhizogenes carrying the RNA interference vector were generated and infected with the symbiotic arbuscular mycorrhiza fungus Glomus intraradices and the rhizobial bacterium Sinorhizobium meliloti as well as with the pathogenic oomycete Aphanomyces euteiches. MtROP9i transgenic lines showed a clear growth-reduced phenotype and revealed neither ROS generation nor MtROP9 and MtRBOH gene expression after microbial infection. Coincidently, antioxidative compounds were not induced in infected MtROP9i roots, as documented by differential proteomics (two-dimensional differential gel electrophoresis). Furthermore, MtROP9 knockdown clearly promoted mycorrhizal and A. euteiches early hyphal root colonization, while rhizobial infection was clearly impaired. Infected MtROP9i roots showed, in part, extremely swollen noninfected root hairs and reduced numbers of deformed nodules. S. meliloti nodulation factor treatments of MtROP9i led to deformed root hairs showing progressed swelling of its upper regions or even of the entire root hair and spontaneous constrictions but reduced branching effects occurring only at swollen root hairs. These results suggest a key role of Rac1 GTPase MtROP9 in ROS-mediated early infection signaling.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kiirika LM, Bergmann HF, Schikowsky C, et al. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology. 2012;159(1):501-516.
Kiirika, L. M., Bergmann, H. F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., Niehaus, K., et al. (2012). Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology, 159(1), 501-516.
Kiirika, L. M., Bergmann, H. F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., Niehaus, K., and Colditz, F. (2012). Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology 159, 501-516.
Kiirika, L.M., et al., 2012. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology, 159(1), p 501-516.
L.M. Kiirika, et al., “Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection”, Plant Physiology, vol. 159, 2012, pp. 501-516.
Kiirika, L.M., Bergmann, H.F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., Niehaus, K., Colditz, F.: Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology. 159, 501-516 (2012).
Kiirika, Leonard Muriithi, Bergmann, Hannah Friederike, Schikowsky, Christine, Wimmer, Diana, Korte, Joschka, Schmitz, Udo, Niehaus, Karsten, and Colditz, Frank. “Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection”. Plant Physiology 159.1 (2012): 501-516.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.
Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K., PLoS ONE 10(4), 2015
PMID: 25849296
Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view.
Nathalie Leborgne-Castel , Bouhidel K., Front Plant Sci 5(), 2014
PMID: 25566303
Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.
Dormann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Huckelhoven R., New Phytol. 204(4), 2014
PMID: 25168837
Cross-interference of plant development and plant-microbe interactions.
Evangelisti E, Rey T, Schornack S., Curr. Opin. Plant Biol. 20(), 2014
PMID: 24922556
Signaling events during initiation of arbuscular mycorrhizal symbiosis.
Schmitz AM, Harrison MJ., J Integr Plant Biol 56(3), 2014
PMID: 24386977
PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris.
Arthikala MK, Montiel J, Nava N, Santana O, Sanchez-Lopez R, Cardenas L, Quinto C., Plant Cell Physiol. 54(8), 2013
PMID: 23788647
Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E., New Phytol. 199(1), 2013
PMID: 23638913
NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.
Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C., New Phytol. 198(3), 2013
PMID: 23432463
Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses.
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R., Antioxid. Redox Signal. 18(16), 2013
PMID: 23249379
Symbiosis and the social network of higher plants.
Venkateshwaran M, Volkening JD, Sussman MR, Ane JM., Curr. Opin. Plant Biol. 16(1), 2013
PMID: 23246268
A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia.
Montiel J, Nava N, Cardenas L, Sanchez-Lopez R, Arthikala MK, Santana O, Sanchez F, Quinto C., Plant Cell Physiol. 53(10), 2012
PMID: 22942250

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22399646
PubMed | Europe PMC

Search this title in

Google Scholar