Force encoding in stick insect legs delineates a reference frame for motor control

Zill S, Schmitz J, Chaudhry S, Büschges A (2012)
Journal of Neurophysiology 108(5): 1453-1472.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Erscheinungsjahr
Zeitschriftentitel
Journal of Neurophysiology
Band
108
Zeitschriftennummer
5
Seite
1453-1472
ISSN
eISSN
PUB-ID

Zitieren

Zill S, Schmitz J, Chaudhry S, Büschges A. Force encoding in stick insect legs delineates a reference frame for motor control. Journal of Neurophysiology. 2012;108(5):1453-1472.
Zill, S., Schmitz, J., Chaudhry, S., & Büschges, A. (2012). Force encoding in stick insect legs delineates a reference frame for motor control. Journal of Neurophysiology, 108(5), 1453-1472. doi:10.1152/jn.00274.2012
Zill, S., Schmitz, J., Chaudhry, S., and Büschges, A. (2012). Force encoding in stick insect legs delineates a reference frame for motor control. Journal of Neurophysiology 108, 1453-1472.
Zill, S., et al., 2012. Force encoding in stick insect legs delineates a reference frame for motor control. Journal of Neurophysiology, 108(5), p 1453-1472.
S. Zill, et al., “Force encoding in stick insect legs delineates a reference frame for motor control”, Journal of Neurophysiology, vol. 108, 2012, pp. 1453-1472.
Zill, S., Schmitz, J., Chaudhry, S., Büschges, A.: Force encoding in stick insect legs delineates a reference frame for motor control. Journal of Neurophysiology. 108, 1453-1472 (2012).
Zill, Sasha, Schmitz, Josef, Chaudhry, Sumaiya, and Büschges, Ansgar. “Force encoding in stick insect legs delineates a reference frame for motor control”. Journal of Neurophysiology 108.5 (2012): 1453-1472.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A., Arthropod Struct Dev 46(4), 2017
PMID: 28552666
Topological and modality-specific representation of somatosensory information in the fly brain.
Tsubouchi A, Yano T, Yokoyama TK, Murtin C, Otsuna H, Ito K., Science 358(6363), 2017
PMID: 29097543
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
Sensory feedback in cockroach locomotion: current knowledge and open questions.
Ayali A, Couzin-Fuchs E, David I, Gal O, Holmes P, Knebel D., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(9), 2015
PMID: 25432627
The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop.
Bacqué-Cazenave J, Chung B, Cofer DW, Cattaert D, Edwards DH., J Neurophysiol 113(6), 2015
PMID: 25552643
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931

105 References

Daten bereitgestellt von Europe PubMed Central.


Akay T., 2002
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989

Bässler U., 1983
Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences
Bässler U., 1988
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus
Bässler U, Wegner U., 1983
Computer-assisted 3D kinematic analysis of all leg joints in walking insects.
Bender JA, Simpson EM, Ritzmann RE., PLoS ONE 5(10), 2010
PMID: 21049024

Borgmann A., 2006
Dominance of local sensory signals over inter-segmental effects in a motor system: experiments
Borgmann A, Toth TI, Gruhn M, Daun-Gruhn S, Büschges A., 2011
Positive feedback from proprioceptors involved in leg movements of the locust
Burrows M, Pflüger HJ., 1988
Organizing network action for locomotion: insights from studying insect walking.
Buschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2007
PMID: 17888515
Form and role of deformation in excitation of an insect mechanoreceptor.
Chapman KM, Duckrow RB, Moran DT., Nature 244(5416), 1973
PMID: 4582504
Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.
Chvatal SA, Torres-Oviedo G, Safavynia SA, Ting LH., J. Neurophysiol. 106(2), 2011
PMID: 21653725
Modeling stress and strain in an insect leg for simulation of campaniform sensilla responses to external forces
Cocatre-Zilgien JH, Delcomyn F., 1999
Movement of joint angles in the legs of a walking insect, Carausius morosus
Cruse H, Bartling C., 1995
Control of body height in a stick insect walking on a treadwheel
Cruse H, Schmitz J, Braun U, Schweins A., 1993
Detection of ground reaction force using a miniaturized inductive displacement sensor
Djuric SM, Nagy LF, Damnjanovic MS., 2010
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod Struct Dev 33(3), 2004
PMID: 18089037
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents.
ECCLES JC, ECCLES RM, LUNDBERG A., J. Physiol. (Lond.) 138(2), 1957
PMID: 13526123
What is the biological basis of sensorimotor integration?
Flanders M., Biol Cybern 104(1-2), 2011
PMID: 21287354

Flannigan C., 1998
A neural basis for gyroscopic force measurement in the halteres of Holorusia
Fox JL, Daniel TL., 2008
Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope.
Fox JL, Fairhall AL, Daniel TL., Proc. Natl. Acad. Sci. U.S.A. 107(8), 2010
PMID: 20133721

Fox JL., 2010
Gimbals in the insect leg.
Frantsevich L, Wang W., Arthropod Struct Dev 38(1), 2008
PMID: 18765299
Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat.
Gossard JP, Brownstone RM, Barajon I, Hultborn H., Exp Brain Res 98(2), 1994
PMID: 8050508
A neural basis for motor primitives in the spinal cord.
Hart CB, Giszter SF., J. Neurosci. 30(4), 2010
PMID: 20107059
Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra
Hofmann T, Bässler U., 1982
Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects
Höltje M, Hustert R., 2003
Finite element modeling of arachnid slit sensilla. II. Actual lyriform organs and the face deformations of the individual slits
Hößl B, Böhm HJ, Schaber CF, Rammerstorfer FG, Barth FG., 2009
Force sensors in hexapod locomotion
Kaliyamoorthy S, Zill SN, Quinn RD., 2006
Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches
Keller BR, Duke EF, Amer AS, Zill SN., 2007
Sensory organs of the thoracic legs of the moth Manduca sexta.
Kent KS, Griffin LM., Cell Tissue Res. 259(2), 1990
PMID: 2337920
Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking.
af Klint R, Mazzaro N, Nielsen JB, Sinkjaer T, Grey MJ., J. Neurophysiol. 103(5), 2010
PMID: 20237313
Campaniform sensilla of Locusta migratoria, L. (Orthoptera, Acrididae)
Knyazeva NI., 1974
Proprioceptors of the house cricket (Gryllus domesticus, L.) (Orthoptera)
Knyazeva NI, Fudalewicz-Niemczyk W, Rosciszewska M., 1975
Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) morosus
Marquardt F., 1940
Combining forces and kinematics for calculating consistent centre of mass trajectories.
Maus HM, Seyfarth A, Grimmer S., J. Exp. Biol. 214(Pt 21), 2011
PMID: 21993778
Force estimation from ensembles of Golgi tendon organs
Mileusnic MP, Loeb GE., 2009
A rigorous model of reflex function indicates that position and force feedback are flexibly tuned to position and force tasks.
Mugge W, Abbink DA, Schouten AC, Dewald JP, van der Helm FC., Exp Brain Res 200(3-4), 2009
PMID: 19714322
Posture control of a cockroach-like robot
Nelson GM, Quinn RD., 1999
Modular control of human walking: a simulation study.
Neptune RR, Clark DJ, Kautz SA., J Biomech 42(9), 2009
PMID: 19394023
Tarsal movements in flies during leg attachment and detachment on a smooth substrate.
Niederegger S, Gorb S., J. Insect Physiol. 49(6), 2003
PMID: 12804721
Walking on a “peg leg”: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
Central programming and reflex control of walking in the cockroach
Pearson KG., 1972
External proprioceptors on the legs of insects of higher order
Petryszak A, Fudalewicz-Niemczyk A., 1994
Proprioception in insects. I. A new type of mechanical receptors from the palps of the cockroach
Pringle JWS., 1938
Proprioception in insects. II. The action of the campaniform sensilla on the legs
Pringle JWS., 1938
Ensemble firing of muscle afferents recorded during normal locomotion in cats.
Prochazka A, Gorassini M., J. Physiol. (Lond.) 507 ( Pt 1)(), 1998
PMID: 9490855
Active signaling of leg loading and unloading in the cockroach.
Ridgel AL, Frazier SF, Dicaprio RA, Zill SN., J. Neurophysiol. 81(3), 1999
PMID: 10085370
Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
Ridgel AL, Frazier SF, DiCaprio RA, Zill SN., J. Comp. Physiol. A 186(4), 2000
PMID: 10798724
Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach.
Ridgel AL, Ritzmann RE, Schaefer PL., J. Exp. Biol. 206(Pt 24), 2003
PMID: 14610030
Modules in the brain stem and spinal cord underlying motor behaviors.
Roh J, Cheung VC, Bizzi E., J. Neurophysiol. 106(3), 2011
PMID: 21653716
Dynamic sensorimotor interactions in locomotion.
Rossignol S, Dubuc R, Gossard JP., Physiol. Rev. 86(1), 2006
PMID: 16371596
Funktionsmorphologische Untersuchungen zur Autotomie der Stabheuschrecke Carausius morosus Br. (Insecta: Phasmida)
Schindler G., 1979
The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus
Schmitz J., 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
An improved electrode design for en passant recording from small nerves
Schmitz J, Büschges A, Delcomyn F., 1988
Force sensing for multi-legged walking robots: theory and experiments—Part 1: overview and force sensing
Schneider A, Schmucker U., 2006
A novel strain sensor based on the campaniform sensillum of insects
Skordos A, Chan PH, Vincent JFV, Jeronimidis G., 2002
Stretch responsiveness of Golgi tendon organs.
Stuart DG, Goslow GE, Mosher CG, Reinking RM., Exp Brain Res 10(5), 1970
PMID: 4247125
Mechanische Sinnesorgane an den Beinen der Stabheuschrecke Carausius morosus (diploma thesis)
Tatar G., 1976
Muscle synergies characterizing human postural responses.
Torres-Oviedo G, Ting LH., J. Neurophysiol. 98(4), 2007
PMID: 17652413
A neuromechanical model explaining forward and backward stepping in the stick insect.
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Mechanoreceptive afferents in the human sural nerve.
Trulsson M., Exp Brain Res 137(1), 2001
PMID: 11310164
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., 2002
The co-ordination of walking movements in arthropods.
Wendler G., Symp. Soc. Exp. Biol. 20(), 1966
PMID: 5958364
Kinematics of locomotion by cats with a single hindlimb deafferented.
Wetzel MC, Atwater AE, Wait JV, Stuart DG., J. Neurophysiol. 39(4), 1976
PMID: 966036
Screenbot: walking inverted using distributed inward gripping
Wile GD, Daltorio KA, Diller ED, Palmer LR, Gorb SN, Ritzmann RE, Quinn RD., 2008
Responses of isolated Golgi tendon organs of cat to sinusoidal stretch.
Wilkinson RS, Fukami Y., J. Neurophysiol. 49(4), 1983
PMID: 6854365
Three-dimensional graphic reconstruction of the insect exoskeleton through confocal imaging of endogenous fluorescence.
Zill S, Frazier SF, Neff D, Quimby L, Carney M, DiCaprio R, Thuma J, Norton M., Microsc. Res. Tech. 48(6), 2000
PMID: 10738318
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus
Zill S, Büschges A, Schmitz J., 2011
Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches
Zill SN, Keller BR, Chaudhry S, Duke ER, Neff D, Quinn R, Flannigan C., 2010
The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle regenerated forces in the American cockroach, Periplaneta americana
Zill SN, Moran DT., 1981
Load signalling by cockroach trochanteral campaniform sensilla.
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22673329
PubMed | Europe PMC

Suchen in

Google Scholar