Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation

Trötschel C, Albaum S, Wolff D, Schröder S, Goesmann A, Nattkemper TW, Poetsch A (2012)
Molecular & Cellular Proteomics 11(8): 512-526.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Liquid chromatography coupled to tandem mass spectrometry in combination with stable-isotope labeling is an established and widely spread method to measure gene expression on the protein level. However, it is often not considered that two opposing processes are responsible for the amount of a protein in a cell - the synthesis as well as the degradation. With this work, we provide an integrative, high-throughput method - from the experimental setup to the bioinformatics analysis - to measure synthesis and degradation rates of an organism's proteome. Applicability of the approach is demonstrated with an investigation of heat shock response, a well-understood regulatory mechanism in bacteria, on the biotechnologically relevant Corynebacterium glutamicum. Utilizing a multi-labeling approach using both heavy stable nitrogen as well as carbon isotopes cells are metabolically labeled in a pulse chase experiment to trace the labels' incorporation in newly synthesized proteins and its loss during protein degradation. Our work aims not only at the calculation of protein turnover rates but also at their statistical evaluation, including variance and hierarchical cluster analysis using the rich internet application QuPE.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Trötschel C, Albaum S, Wolff D, et al. Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation. Molecular & Cellular Proteomics. 2012;11(8):512-526.
Trötschel, C., Albaum, S., Wolff, D., Schröder, S., Goesmann, A., Nattkemper, T. W., & Poetsch, A. (2012). Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation. Molecular & Cellular Proteomics, 11(8), 512-526.
Trötschel, C., Albaum, S., Wolff, D., Schröder, S., Goesmann, A., Nattkemper, T. W., and Poetsch, A. (2012). Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation. Molecular & Cellular Proteomics 11, 512-526.
Trötschel, C., et al., 2012. Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation. Molecular & Cellular Proteomics, 11(8), p 512-526.
C. Trötschel, et al., “Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation”, Molecular & Cellular Proteomics, vol. 11, 2012, pp. 512-526.
Trötschel, C., Albaum, S., Wolff, D., Schröder, S., Goesmann, A., Nattkemper, T.W., Poetsch, A.: Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation. Molecular & Cellular Proteomics. 11, 512-526 (2012).
Trötschel, C, Albaum, Stefan, Wolff, D, Schröder, S, Goesmann, Alexander, Nattkemper, Tim Wilhelm, and Poetsch, A. “Protein turnover quantification in a multi-labeling approach - from data calculation to evaluation”. Molecular & Cellular Proteomics 11.8 (2012): 512-526.
This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

The CatSper channel controls chemosensation in sea urchin sperm.
Seifert R, Flick M, Bonigk W, Alvarez L, Trotschel C, Poetsch A, Muller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strunker T., EMBO J. 34(3), 2015
PMID: 25535245
Protein turnover forms one of the highest maintenance costs in Lactococcus lactis.
Lahtvee PJ, Seiman A, Arike L, Adamberg K, Vilu R., Microbiology (Reading, Engl.) 160(Pt 7), 2014
PMID: 24739216
Quantitative analysis of protein turnover in plants.
Nelson CJ, Li L, Millar AH., Proteomics 14(4-5), 2014
PMID: 24323582
A novel pulse-chase SILAC strategy measures changes in protein decay and synthesis rates induced by perturbation of proteostasis with an Hsp90 inhibitor.
Fierro-Monti I, Racle J, Hernandez C, Waridel P, Hatzimanikatis V, Quadroni M., PLoS ONE 8(11), 2013
PMID: 24312217
Using the ubiquitin-modified proteome to monitor protein homeostasis function.
Carrano AC, Bennett EJ., Mol. Cell Proteomics 12(12), 2013
PMID: 23704779
The need for agriculture phenotyping: "moving from genotype to phenotype".
Boggess MV, Lippolis JD, Hurkman WJ, Fagerquist CK, Briggs SP, Gomes AV, Righetti PG, Bala K., J Proteomics 93(), 2013
PMID: 23563084
Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria.
Trotschel C, Albaum SP, Poetsch A., Microb Biotechnol 6(6), 2013
PMID: 23425033
Proteome dynamics: revisiting turnover with a global perspective.
Claydon AJ, Beynon R., Mol. Cell Proteomics 11(12), 2012
PMID: 23125033
Developments in quantitative mass spectrometry for the analysis of proteome dynamics.
Hughes C, Krijgsveld J., Trends Biotechnol. 30(12), 2012
PMID: 23107010

71 References

Data provided by Europe PubMed Central.

Cell biology. The lives of proteins.
Plotkin JB., Science 331(6018), 2011
PMID: 21310990
Regulation by proteolysis: energy-dependent proteases and their targets.
Gottesman S, Maurizi MR., Microbiol. Rev. 56(4), 1992
PMID: 1480111
The COG database: a tool for genome-scale analysis of protein functions and evolution.
Tatusov RL, Galperin MY, Natale DA, Koonin EV., Nucleic Acids Res. 28(1), 2000
PMID: 10592175
A quantitative analysis software tool for mass spectrometry-based proteomics.
Park SK, Venable JD, Xu T, Yates JR 3rd., Nat. Methods 5(4), 2008
PMID: 18345006
New algorithm for 15N/14N quantitation with LC-ESI-MS using an LTQ-FT mass spectrometer.
Andreev VP, Li L, Rejtar T, Li Q, Ferry JG, Karger BL., J. Proteome Res. 5(8), 2006
PMID: 16889428
Ultrahigh-speed calculation of isotope distributions.
Rockwood AL, Van Orden SL., Anal. Chem. 68(13), 1996
PMID: 21619291
Computation of the isotopic distribution in two dimensions.
Fernandez-de-Cossio J., Anal. Chem. 82(15), 2010
PMID: 20614924
Efficient calculation of exact mass isotopic distributions.
Snider RK., J. Am. Soc. Mass Spectrom. 18(8), 2007
PMID: 17583532
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
Savitzky A., Golay M.., 1964
Regulation of the heat-shock response.
Yura T, Nakahigashi K., Curr. Opin. Microbiol. 2(2), 1999
PMID: 10322172
Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT).
Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM., Proc. Natl. Acad. Sci. U.S.A. 103(25), 2006
PMID: 16769897
Identification and quantitation of newly synthesized proteins in Escherichia coli by enrichment of azidohomoalanine-labeled peptides with diagonal chromatography.
Kramer G, Sprenger RR, Back J, Dekker HL, Nessen MA, van Maarseveen JH, de Koning LJ, Hellingwerf KJ, de Jong L, de Koster CG., Mol. Cell Proteomics 8(7), 2009
PMID: 19321432
Structure and function of bacterial sigma factors.
Helmann JD, Chamberlin MJ., Annu. Rev. Biochem. 57(), 1988
PMID: 3052291
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O., J. Biotechnol. 98(2-3), 2002
PMID: 12141991
Stable isotope metabolic labeling with a novel N-enriched bacteria diet for improved proteomic analyses of mouse models for psychopathologies.
Frank E, Kessler MS, Filiou MD, Zhang Y, Maccarrone G, Reckow S, Bunck M, Heumann H, Turck CW, Landgraf R, Hambsch B., PLoS ONE 4(11), 2009
PMID: 19915716

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22493176
PubMed | Europe PMC

Search this title in

Google Scholar