Molecular evolution of genes in avian genomes

Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JBW, Backström N, Künstner A, Balakrishnan CN, Heger A, Ponting CP, Clayton DF, et al. (2010)
Genome Biology 11(6): R68.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ; ; ; ; ; ; ; ;
Background: Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results: We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an overrepresentation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions: Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between ω and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes.
Publishing Year

Cite this

Nam K, Mugal C, Nabholz B, et al. Molecular evolution of genes in avian genomes. Genome Biology. 2010;11(6):R68.
Nam, K., Mugal, C., Nabholz, B., Schielzeth, H., Wolf, J. B. W., Backström, N., Künstner, A., et al. (2010). Molecular evolution of genes in avian genomes. Genome Biology, 11(6), R68. doi:10.1186/gb-2010-11-6-r68
Nam, K., Mugal, C., Nabholz, B., Schielzeth, H., Wolf, J. B. W., Backström, N., Künstner, A., Balakrishnan, C. N., Heger, A., Ponting, C. P., et al. (2010). Molecular evolution of genes in avian genomes. Genome Biology 11, R68.
Nam, K., et al., 2010. Molecular evolution of genes in avian genomes. Genome Biology, 11(6), p R68.
K. Nam, et al., “Molecular evolution of genes in avian genomes”, Genome Biology, vol. 11, 2010, pp. R68.
Nam, K., Mugal, C., Nabholz, B., Schielzeth, H., Wolf, J.B.W., Backström, N., Künstner, A., Balakrishnan, C.N., Heger, A., Ponting, C.P., Clayton, D.F., Ellegren, H.: Molecular evolution of genes in avian genomes. Genome Biology. 11, R68 (2010).
Nam, Kiwoong, Mugal, Carina, Nabholz, Benoit, Schielzeth, Holger, Wolf, Jochen BW, Backström, Niclas, Künstner, Axel, Balakrishnan, Christopher N, Heger, Andreas, Ponting, Chris P, Clayton, David F, and Ellegren, Hans. “Molecular evolution of genes in avian genomes”. Genome Biology 11.6 (2010): R68.
This data publication is cited in the following publications:
This publication cites the following data publications:

37 Citations in Europe PMC

Data provided by Europe PubMed Central.

Natural selection shaped the rise and fall of passenger pigeon genomic diversity.
Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA, Baker AJ, Demboski JR, Doll A, Da Fonseca RR, Fulton TL, Gilbert MTP, Heintzman PD, Letts B, McIntosh G, O'Connell BL, Peck M, Pipes ML, Rice ES, Santos KM, Sohrweide AG, Vohr SH, Corbett-Detig RB, Green RE, Shapiro B., Science 358(6365), 2017
PMID: 29146814
Self-domestication in Homo sapiens: Insights from comparative genomics.
Theofanopoulou C, Gastaldon S, O'Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C., PLoS ONE 12(10), 2017
PMID: 29045412
Isolation with asymmetric gene flow during the nonsynchronous divergence of dry forest birds.
Oswald JA, Overcast I, Mauck WM 3rd, Andersen MJ, Smith BT., Mol. Ecol. 26(5), 2017
PMID: 28100029
Gene Regulatory Evolution During Speciation in a Songbird.
Davidson JH, Balakrishnan CN., G3 (Bethesda) 6(5), 2016
PMID: 26976438
Detecting signatures of positive selection associated with musical aptitude in the human genome.
Liu X, Kanduri C, Oikkonen J, Karma K, Raijas P, Ukkola-Vuoti L, Teo YY, Jarvela I., Sci Rep 6(), 2016
PMID: 26879527
Transcriptomic analyses of regenerating adult feathers in chicken.
Ng CS, Chen CK, Fan WL, Wu P, Wu SM, Chen JJ, Lai YT, Mao CT, Lu MY, Chen DR, Lin ZS, Yang KJ, Sha YA, Tu TC, Chen CF, Chuong CM, Li WH., BMC Genomics 16(), 2015
PMID: 26445093
Evolutionary constraint in flanking regions of avian genes.
Kunstner A, Nabholz B, Ellegren H., Mol. Biol. Evol. 28(9), 2011
PMID: 21393603
The singing genome.
Ellegren H., Heredity (Edinb) 106(4), 2011
PMID: 20823906
Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.
Subramanian S, Huynen L, Millar CD, Lambert DM., BMC Evol. Biol. 10(), 2010
PMID: 21156082

123 References

Data provided by Europe PubMed Central.

Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over.
Haddrill PR, Halligan DL, Tomaras D, Charlesworth B., Genome Biol. 8(2), 2007
PMID: 17284312
Evolution of protein-coding genes in Drosophila.
Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG., Trends Genet. 24(3), 2008
PMID: 18249460
Comparative recombination rates in the rat, mouse, and human genomes.
Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ., Genome Res. 14(4), 2004
PMID: 15059993
Absence of the TAP2 human recombination hotspot in chimpanzees.
Ptak SE, Roeder AD, Stephens M, Gilad Y, Paabo S, Przeworski M., PLoS Biol. 2(6), 2004
PMID: 15208713
Comparison of fine-scale recombination rates in humans and chimpanzees.
Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, Bontrop RE, McVean GA, Gabriel SB, Reich D, Donnelly P, Altshuler D., Science 308(5718), 2005
PMID: 15705809
The rise and fall of a human recombination hot spot.
Jeffreys AJ, Neumann R., Nat. Genet. 41(5), 2009
PMID: 19349985
A common sequence motif associated with recombination hot spots and genome instability in humans.
Myers S, Freeman C, Auton A, Donnelly P, McVean G., Nat. Genet. 40(9), 2008
PMID: 19165926
InParanoid 6: eukaryotic ortholog clusters with inparalogs.
Berglund AC, Sjolund E, Ostlund G, Sonnhammer EL., Nucleic Acids Res. 36(Database issue), 2008
PMID: 18055500
PAML 4: phylogenetic analysis by maximum likelihood.
Yang Z., Mol. Biol. Evol. 24(8), 2007
PMID: 17483113
A direct approach to false discovery rates.
GOstat: find statistically overrepresented Gene Ontologies within a group of genes.
Beissbarth T, Speed TP., Bioinformatics 20(9), 2004
PMID: 14962934
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
OMIM Database


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 20573239
PubMed | Europe PMC

Search this title in

Google Scholar