The recombination landscape of the zebra finch Taeniopygia guttata genome

Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H (2010)
Genome Research 20(4): 485-495.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ;
Abstract
Understanding the causes and consequences of variation in the rate of recombination is essential since this parameter is considered to affect levels of genetic variability, the efficacy of selection, and the design of association and linkage mapping studies. However, there is limited knowledge about the factors governing recombination rate variation. We genotyped 1920 single nucleotide polymorphisms in a multigeneration pedigree of more than 1000 zebra finches (Taeniopygia guttata) to develop a genetic linkage map, and then we used these map data together with the recently available draft genome sequence of the zebra finch to estimate recombination rates in 1 Mb intervals across the genome. The average zebra finch recombination rate (1.5 cM/Mb) is higher than in humans, but significantly lower than in chicken. The local rates of recombination in chicken and zebra finch were only weakly correlated, demonstrating evolutionary turnover of the recombination landscape in birds. The distribution of recombination events was heavily biased toward ends of chromosomes, with a stronger telomere effect than so far seen in any organism. In fact, the recombination rate was as low as 0.1 cM/Mb in intervals up to 100 Mb long in the middle of the larger chromosomes. We found a positive correlation between recombination rate and GC content, as well as GC-rich sequence motifs. Levels of linkage disequilibrium (LD) were significantly higher in regions of low recombination, showing that heterogeneity in recombination rates have left a footprint on the genomic landscape of LD in zebra finch populations.
Publishing Year
ISSN
PUB-ID

Cite this

Backstrom N, Forstmeier W, Schielzeth H, et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research. 2010;20(4):485-495.
Backstrom, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., Webster, M. T., et al. (2010). The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research, 20(4), 485-495.
Backstrom, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., Webster, M. T., Ost, T., Schneider, M., Kempenaers, B., et al. (2010). The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research 20, 485-495.
Backstrom, N., et al., 2010. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research, 20(4), p 485-495.
N. Backstrom, et al., “The recombination landscape of the zebra finch Taeniopygia guttata genome”, Genome Research, vol. 20, 2010, pp. 485-495.
Backstrom, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., Webster, M.T., Ost, T., Schneider, M., Kempenaers, B., Ellegren, H.: The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research. 20, 485-495 (2010).
Backstrom, N., Forstmeier, W., Schielzeth, Holger, Mellenius, H., Nam, K., Bolund, E., Webster, M. T., Ost, T., Schneider, M., Kempenaers, B., and Ellegren, H. “The recombination landscape of the zebra finch Taeniopygia guttata genome”. Genome Research 20.4 (2010): 485-495.
This data publication is cited in the following publications:
This publication cites the following data publications:

66 Citations in Europe PMC

Data provided by Europe PubMed Central.

A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata.
Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W., Mol. Ecol. 24(15), 2015
PMID: 26087713
Quantifying realized inbreeding in wild and captive animal populations.
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W., Heredity (Edinb) 114(4), 2015
PMID: 25585923
Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single‐nucleotide polymorphism array
Kawakami T, Backstrom N, Burri R, Husby A, Olason P, Rice AM, Alund M, Qvarnstrom A, Ellegren H., Mol Ecol Resour 14(6), 2014
PMID: IND600822950
Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor.
Romanov MN, Farre M, Lithgow PE, Fowler KE, Skinner BM, O'Connor R, Fonseka G, Backstrom N, Matsuda Y, Nishida C, Houde P, Jarvis ED, Ellegren H, Burt DW, Larkin DM, Griffin DK., BMC Genomics 15(), 2014
PMID: 25496766
Crossing-over in a hypervariable species preferentially occurs in regions of high local similarity.
Seplyarskiy VB, Logacheva MD, Penin AA, Baranova MA, Leushkin EV, Demidenko NV, Klepikova AV, Kondrashov FA, Kondrashov AS, James TY., Mol. Biol. Evol. 31(11), 2014
PMID: 25135947
A strategy for characterization of persistent heteroduplex DNA in higher plants.
Dong CB, Mao JF, Suo YJ, Shi L, Wang J, Zhang PD, Kang XY., Plant J. 80(2), 2014
PMID: 25073546
Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array.
Kawakami T, Backstrom N, Burri R, Husby A, Olason P, Rice AM, Alund M, Qvarnstrom A, Ellegren H., Mol Ecol Resour 14(6), 2014
PMID: 24784959
Advancing avian behavioral neuroendocrinology through genomics.
Clayton DF, London SE., Front Neuroendocrinol 35(1), 2014
PMID: 24113222
Distribution of recombination hotspots in the human genome--a comparison of computer simulations with real data.
Mackiewicz D, de Oliveira PM, Moss de Oliveira S, Cebrat S., PLoS ONE 8(6), 2013
PMID: 23776462
The singing genome.
Ellegren H., Heredity (Edinb) 106(4), 2011
PMID: 20823906

82 References

Data provided by Europe PubMed Central.

A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution.
Stapley J, Birkhead TR, Burke T, Slate J., Genetics 179(1), 2008
PMID: 18493078
Extensive and breed-specific linkage disequilibrium in Canis familiaris.
Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF, Kruglyak L, Ostrander EA., Genome Res. 14(12), 2004
PMID: 15545498
A high-resolution linkage map for the Z chromosome in chicken reveals hot spots for recombination.
Wahlberg P, Stromstedt L, Tordoir X, Foglio M, Heath S, Lechner D, Hellstrom AR, Tixier-Boichard M, Lathrop M, Gut IG, Andersson L., Cytogenet. Genome Res. 117(1-4), 2007
PMID: 17675841
The genome of a songbird.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Volker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK., Nature 464(7289), 2010
PMID: 20360741
Compositional evolution of noncoding DNA in the human and chimpanzee genomes.
Webster MT, Smith NG, Ellegren H., Mol. Biol. Evol. 20(2), 2003
PMID: 12598695
Male-driven biased gene conversion governs the evolution of base composition in human alu repeats.
Webster MT, Smith NG, Hultin-Rosenberg L, Arndt PF, Ellegren H., Mol. Biol. Evol. 22(6), 2005
PMID: 15772377

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20357052
PubMed | Europe PMC

Search this title in

Google Scholar