The recombination landscape of the zebra finch Taeniopygia guttata genome

Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H (2010)
Genome Research 20(4): 485-495.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ;
Abstract
Understanding the causes and consequences of variation in the rate of recombination is essential since this parameter is considered to affect levels of genetic variability, the efficacy of selection, and the design of association and linkage mapping studies. However, there is limited knowledge about the factors governing recombination rate variation. We genotyped 1920 single nucleotide polymorphisms in a multigeneration pedigree of more than 1000 zebra finches (Taeniopygia guttata) to develop a genetic linkage map, and then we used these map data together with the recently available draft genome sequence of the zebra finch to estimate recombination rates in 1 Mb intervals across the genome. The average zebra finch recombination rate (1.5 cM/Mb) is higher than in humans, but significantly lower than in chicken. The local rates of recombination in chicken and zebra finch were only weakly correlated, demonstrating evolutionary turnover of the recombination landscape in birds. The distribution of recombination events was heavily biased toward ends of chromosomes, with a stronger telomere effect than so far seen in any organism. In fact, the recombination rate was as low as 0.1 cM/Mb in intervals up to 100 Mb long in the middle of the larger chromosomes. We found a positive correlation between recombination rate and GC content, as well as GC-rich sequence motifs. Levels of linkage disequilibrium (LD) were significantly higher in regions of low recombination, showing that heterogeneity in recombination rates have left a footprint on the genomic landscape of LD in zebra finch populations.
Publishing Year
ISSN
PUB-ID

Cite this

Backstrom N, Forstmeier W, Schielzeth H, et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research. 2010;20(4):485-495.
Backstrom, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., Webster, M. T., et al. (2010). The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research, 20(4), 485-495. doi:10.1101/gr.101410.109
Backstrom, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., Webster, M. T., Ost, T., Schneider, M., Kempenaers, B., et al. (2010). The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research 20, 485-495.
Backstrom, N., et al., 2010. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research, 20(4), p 485-495.
N. Backstrom, et al., “The recombination landscape of the zebra finch Taeniopygia guttata genome”, Genome Research, vol. 20, 2010, pp. 485-495.
Backstrom, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., Webster, M.T., Ost, T., Schneider, M., Kempenaers, B., Ellegren, H.: The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research. 20, 485-495 (2010).
Backstrom, N., Forstmeier, W., Schielzeth, Holger, Mellenius, H., Nam, K., Bolund, E., Webster, M. T., Ost, T., Schneider, M., Kempenaers, B., and Ellegren, H. “The recombination landscape of the zebra finch Taeniopygia guttata genome”. Genome Research 20.4 (2010): 485-495.
This data publication is cited in the following publications:
This publication cites the following data publications:

106 Citations in Europe PMC

Data provided by Europe PubMed Central.

Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution.
Völker M, Backström N, Skinner BM, Langley EJ, Bunzey SK, Ellegren H, Griffin DK., Genome Res 20(4), 2010
PMID: 20357050
Trisomy and triploidy are sources of embryo mortality in the zebra finch.
Forstmeier W, Ellegren H., Proc Biol Sci 277(1694), 2010
PMID: 20444723
A polymorphism in the oestrogen receptor gene explains covariance between digit ratio and mating behaviour.
Forstmeier W, Mueller JC, Kempenaers B., Proc Biol Sci 277(1698), 2010
PMID: 20534613
Molecular evolution of genes in avian genomes.
Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JB, Backström N, Künstner A, Balakrishnan CN, Heger A, Ponting CP, Clayton DF, Ellegren H., Genome Biol 11(6), 2010
PMID: 20573239

82 References

Data provided by Europe PubMed Central.

A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution.
Stapley J, Birkhead TR, Burke T, Slate J., Genetics 179(1), 2008
PMID: 18493078
Extensive and breed-specific linkage disequilibrium in Canis familiaris.
Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF, Kruglyak L, Ostrander EA., Genome Res. 14(12), 2004
PMID: 15545498
A high-resolution linkage map for the Z chromosome in chicken reveals hot spots for recombination.
Wahlberg P, Stromstedt L, Tordoir X, Foglio M, Heath S, Lechner D, Hellstrom AR, Tixier-Boichard M, Lathrop M, Gut IG, Andersson L., Cytogenet. Genome Res. 117(1-4), 2007
PMID: 17675841
The genome of a songbird.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Volker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK., Nature 464(7289), 2010
PMID: 20360741
Compositional evolution of noncoding DNA in the human and chimpanzee genomes.
Webster MT, Smith NG, Ellegren H., Mol. Biol. Evol. 20(2), 2003
PMID: 12598695
Male-driven biased gene conversion governs the evolution of base composition in human alu repeats.
Webster MT, Smith NG, Hultin-Rosenberg L, Arndt PF, Ellegren H., Mol. Biol. Evol. 22(6), 2005
PMID: 15772377

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20357052
PubMed | Europe PMC

Search this title in

Google Scholar