Stochastic evolution equations in weighted L² spaces with jump noise

Michel S (2012)
Bielefeld: Universität Bielefeld.

Download
OA
Bielefelder E-Dissertation | Englisch
Autor
Betreuer
Abstract / Bemerkung
In this thesis, we study two classes of stochastic differential equations (SDEs in short) with jump noise in weighted L² spaces over $\mathbb{R}^d$. More precisely, the first class of SDEs is a jump-diffusion model in the sense of Merton, i.e. the SDE is driven by a Wiener noise and a Poisson noise. The second class consists of SDE's with Levy noise. We show existence of mild solutions and establish their regularity properties in the case of a drift term consisting of a nonautonomous linear (differential) operator and a non-Lipschitz Nemitskii-type operator.
Jahr
PUB-ID

Zitieren

Michel S. Stochastic evolution equations in weighted L² spaces with jump noise. Bielefeld: Universität Bielefeld; 2012.
Michel, S. (2012). Stochastic evolution equations in weighted L² spaces with jump noise. Bielefeld: Universität Bielefeld.
Michel, S. (2012). Stochastic evolution equations in weighted L² spaces with jump noise. Bielefeld: Universität Bielefeld.
Michel, S., 2012. Stochastic evolution equations in weighted L² spaces with jump noise, Bielefeld: Universität Bielefeld.
S. Michel, Stochastic evolution equations in weighted L² spaces with jump noise, Bielefeld: Universität Bielefeld, 2012.
Michel, S.: Stochastic evolution equations in weighted L² spaces with jump noise. Universität Bielefeld, Bielefeld (2012).
Michel, Simon. Stochastic evolution equations in weighted L² spaces with jump noise. Bielefeld: Universität Bielefeld, 2012.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2012-04-25T10:42:09Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar