Local Charge and Spin Currents in Magnetothermal Landscapes

Weiler M, Althammer M, Czeschka FD, Huebl H, Wagner MS, Opel M, Imort I-M, Reiss G, Thomas A, Gross R, Goennenwein STB (2012)
Phys. Rev. Lett. 108(10): 106602.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
Phys. Rev. Lett.
Band
108
Zeitschriftennummer
10
Seite
106602
ISSN
eISSN
PUB-ID

Zitieren

Weiler M, Althammer M, Czeschka FD, et al. Local Charge and Spin Currents in Magnetothermal Landscapes. Phys. Rev. Lett. 2012;108(10):106602.
Weiler, M., Althammer, M., Czeschka, F. D., Huebl, H., Wagner, M. S., Opel, M., Imort, I. - M., et al. (2012). Local Charge and Spin Currents in Magnetothermal Landscapes. Phys. Rev. Lett., 108(10), 106602. doi:10.1103/PhysRevLett.108.106602
Weiler, M., Althammer, M., Czeschka, F. D., Huebl, H., Wagner, M. S., Opel, M., Imort, I. - M., Reiss, G., Thomas, A., Gross, R., et al. (2012). Local Charge and Spin Currents in Magnetothermal Landscapes. Phys. Rev. Lett. 108, 106602.
Weiler, M., et al., 2012. Local Charge and Spin Currents in Magnetothermal Landscapes. Phys. Rev. Lett., 108(10), p 106602.
M. Weiler, et al., “Local Charge and Spin Currents in Magnetothermal Landscapes”, Phys. Rev. Lett., vol. 108, 2012, pp. 106602.
Weiler, M., Althammer, M., Czeschka, F.D., Huebl, H., Wagner, M.S., Opel, M., Imort, I.-M., Reiss, G., Thomas, A., Gross, R., Goennenwein, S.T.B.: Local Charge and Spin Currents in Magnetothermal Landscapes. Phys. Rev. Lett. 108, 106602 (2012).
Weiler, Mathias, Althammer, Matthias, Czeschka, Franz D., Huebl, Hans, Wagner, Martin S., Opel, Matthias, Imort, Inga-Mareen, Reiss, Günter, Thomas, Andy, Gross, Rudolf, and Goennenwein, Sebastian T. B. “Local Charge and Spin Currents in Magnetothermal Landscapes”. Phys. Rev. Lett. 108.10 (2012): 106602.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature.
Dong BW, Cramer J, Ganzhorn K, Yuan HY, Guo EJ, Goennenwein STB, Kläui M., J Phys Condens Matter 30(3), 2018
PMID: 29186002
Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons.
Liu YS, Dong YJ, Zhang J, Yu HL, Feng JF, Yang XF., Nanotechnology 29(12), 2018
PMID: 29355833
Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient.
Reimer O, Meier D, Bovender M, Helmich L, Dreessen JO, Krieft J, Shestakov AS, Back CH, Schmalhorst JM, Hütten A, Reiss G, Kuschel T., Sci Rep 7(), 2017
PMID: 28094279
Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method.
Sola A, Bougiatioti P, Kuepferling M, Meier D, Reiss G, Pasquale M, Kuschel T, Basso V., Sci Rep 7(), 2017
PMID: 28440288
A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.
Lange M, Guénon S, Lever F, Kleiner R, Koelle D., Rev Sci Instrum 88(12), 2017
PMID: 29289195
Pure spin current devices based on ferromagnetic topological insulators.
Götte M, Joppe M, Dahm T., Sci Rep 6(), 2016
PMID: 27782187
Spin-transfer torque in ferromagnetic bilayers generated by anomalous Hall effect and anisotropic magnetoresistance.
Taniguchi T, Grollier J, Stiles MD., Proc SPIE Int Soc Opt Eng 9931(), 2016
PMID: 28057977
Spin caloritronics of blue phosphorene nanoribbons.
Liu YS, Zhang X, Yang XF, Hong XK, Feng JF, Si MS, Wang XF., Phys Chem Chem Phys 17(16), 2015
PMID: 25801010
Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers.
Lee KD, Kim DJ, Yeon Lee H, Kim SH, Lee JH, Lee KM, Jeong JR, Lee KS, Song HS, Sohn JW, Shin SC, Park BG., Sci Rep 5(), 2015
PMID: 26020492
Giant spin thermoelectric effects in all-carbon nanojunctions.
Yang XF, Wang HL, Chen YS, Kuang YW, Hong XK, Liu YS, Feng JF, Wang XF., Phys Chem Chem Phys 17(35), 2015
PMID: 26264191
Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO.
Meier D, Reinhardt D, van Straaten M, Klewe C, Althammer M, Schreier M, Goennenwein ST, Gupta A, Schmid M, Back CH, Schmalhorst JM, Kuschel T, Reiss G., Nat Commun 6(), 2015
PMID: 26394541
Towards a table-top microscope for nanoscale magnetic imaging using picosecond thermal gradients.
Bartell JM, Ngai DH, Leng Z, Fuchs GD., Nat Commun 6(), 2015
PMID: 26419515
Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure.
Wang S, Zou L, Zhang X, Cai J, Wang S, Shen B, Sun J., Nanoscale 7(42), 2015
PMID: 26455519
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics.
Yu H, Kelly Od, Cros V, Bernard R, Bortolotti P, Anane A, Brandl F, Huber R, Stasinopoulos I, Grundler D., Sci Rep 4(), 2014
PMID: 25355200
Spin caloritronics.
Bauer GE, Saitoh E, van Wees BJ., Nat Mater 11(5), 2012
PMID: 22522639
Giant spin Seebeck effect in a non-magnetic material.
Jaworski CM, Myers RC, Johnston-Halperin E, Heremans JP., Nature 487(7406), 2012
PMID: 22785317

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22463435
PubMed | Europe PMC

arXiv: 1110.3981

Suchen in

Google Scholar