# Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde

Hammer T, Manthe U (2012) *The Journal of Chemical Physics* 136(5): 054105.

Download

**No fulltext has been uploaded. References only!**

*Journal Article*|

*Original Article*|

*Published*|

*English*

No fulltext has been uploaded

Department

Abstract

An iterative block Lanczos-type diagonalization scheme utilizing the state-averaged multi-configurational time-dependent Hartree (MCTDH) approach is introduced. Combining propagation in real and imaginary time and using a set of initial seed wavefunctions corresponding to excitations via the different components of the dipole moment vector, the scheme can favorably be used to selectively compute vibrational states which show high intensities in vibrational absorption spectra. Tunneling splitted vibrational states in double well systems can be described particularly efficient employing an increased set of seed wavefunctions which includes symmetric and anti-symmetric wavefunctions simultaneously. The new approach is used to study the tunneling splittings of the vibrationally excited states of malonaldehyde. Full-dimensional multi-layer MCTDH calculations are performed and results for the tunneling splittings of several excited vibrational states can be obtained. The calculated tunneling splittings agree reasonably well with available experimental data. Order of magnitude differences between tunneling splittings of different vibrationally excited states are found and interpreted. (C) 2012 American Institute of Physics. [doi:10.1063/1.3681166]

Publishing Year

ISSN

PUB-ID

### Cite this

Hammer T, Manthe U. Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde.

*The Journal of Chemical Physics*. 2012;136(5):054105.Hammer, T., & Manthe, U. (2012). Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde.

*The Journal of Chemical Physics*,*136*(5), 054105. doi:10.1063/1.3681166Hammer, T., and Manthe, U. (2012). Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde.

*The Journal of Chemical Physics*136, 054105.Hammer, T., & Manthe, U., 2012. Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde.

*The Journal of Chemical Physics*, 136(5), p 054105. T. Hammer and U. Manthe, “Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde”,

*The Journal of Chemical Physics*, vol. 136, 2012, pp. 054105. Hammer, T., Manthe, U.: Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde. The Journal of Chemical Physics. 136, 054105 (2012).

Hammer, Thorsten, and Manthe, Uwe. “Iterative diagonalization in the state-averaged multi-configurational time-dependent Hartree approach: Excited state tunneling splittings in malonaldehyde”.

*The Journal of Chemical Physics*136.5 (2012): 054105.
This data publication is cited in the following publications:

This publication cites the following data publications:

### 19 Citations in Europe PMC

Data provided by Europe PubMed Central.

The multi-configurational time-dependent Hartree approach revisited.

Manthe U.,

PMID: 26133412

Manthe U.,

*J Chem Phys*142(24), 2015PMID: 26133412

Neural network iterative diagonalization method to solve eigenvalue problems in quantum mechanics.

Yu HG.,

PMID: 25959361

Yu HG.,

*Phys Chem Chem Phys*17(21), 2015PMID: 25959361

Theoretical study of the C-H/O-H stretching vibrations in malonaldehyde.

Pitsevich GA, Malevich AE, Kozlovskaya EN, Doroshenko IY, Pogorelov VE, Sablinskas V, Balevicius V.,

PMID: 25795613

Pitsevich GA, Malevich AE, Kozlovskaya EN, Doroshenko IY, Pogorelov VE, Sablinskas V, Balevicius V.,

*Spectrochim Acta A Mol Biomol Spectrosc*145(), 2015PMID: 25795613

Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 → H2 + CH3 reaction on a neural network PES.

Welsch R, Manthe U.,

PMID: 25681908

Welsch R, Manthe U.,

*J Chem Phys*142(6), 2015PMID: 25681908

Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules.

Yu HG.,

PMID: 25637968

Yu HG.,

*J Chem Phys*142(4), 2015PMID: 25637968

A complex guided spectral transform Lanczos method for studying quantum resonance states.

Yu HG.,

PMID: 25554140

Yu HG.,

*J Chem Phys*141(24), 2014PMID: 25554140

The role of the transition state in polyatomic reactions: initial state-selected reaction probabilities of the H + CH₄ → H₂ + CH₃ reaction.

Welsch R, Manthe U.,

PMID: 25381520

Welsch R, Manthe U.,

*J Chem Phys*141(17), 2014PMID: 25381520

Calculation of the vibrational excited states of malonaldehyde and their tunneling splittings with the multi-configuration time-dependent Hartree method.

Schroder M, Meyer HD.,

PMID: 25053310

Schroder M, Meyer HD.,

*J Chem Phys*141(3), 2014PMID: 25053310

Multi-layer Potfit: an accurate potential representation for efficient high-dimensional quantum dynamics.

Otto F.,

PMID: 24410220

Otto F.,

*J Chem Phys*140(1), 2014PMID: 24410220

Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates.

Neff M, Rauhut G.,

PMID: 23548204

Neff M, Rauhut G.,

*Spectrochim Acta A Mol Biomol Spectrosc*119(), 2014PMID: 23548204

MCTDH study on vibrational states of the CO/Cu(100) system.

Meng Q, Meyer HD.,

PMID: 24182066

Meng Q, Meyer HD.,

*J Chem Phys*139(16), 2013PMID: 24182066

Communication: Selection rules for tunneling splitting of vibrationally excited levels.

Siebrand W, Smedarchina Z, Fernandez-Ramos A.,

PMID: 23862915

Siebrand W, Smedarchina Z, Fernandez-Ramos A.,

*J Chem Phys*139(2), 2013PMID: 23862915

Vibrations of porphycene in the S0 and S1 electronic states: single vibronic level dispersed fluorescence study in a supersonic jet.

Mengesha ET, Sepiol J, Borowicz P, Waluk J.,

PMID: 23656125

Mengesha ET, Sepiol J, Borowicz P, Waluk J.,

*J Chem Phys*138(17), 2013PMID: 23656125

Fast Shepard interpolation on graphics processing units: potential energy surfaces and dynamics for H + CH4 → H2 + CH3.

Welsch R, Manthe U.,

PMID: 23635122

Welsch R, Manthe U.,

*J Chem Phys*138(16), 2013PMID: 23635122

A multilayer MCTDH study on the full dimensional vibronic dynamics of naphthalene and anthracene cations.

Meng Q, Meyer HD.,

PMID: 23298047

Meng Q, Meyer HD.,

*J Chem Phys*138(1), 2013PMID: 23298047

Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials.

Welsch R, Manthe U.,

PMID: 23277927

Welsch R, Manthe U.,

*J Chem Phys*137(24), 2012PMID: 23277927

Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method.

Meng Q, Faraji S, Vendrell O, Meyer HD.,

PMID: 23039594

Meng Q, Faraji S, Vendrell O, Meyer HD.,

*J Chem Phys*137(13), 2012PMID: 23039594

First principle nonlinear quantum dynamics using a correlation-based von Neumann entropy.

Westermann T, Manthe U.,

PMID: 22667549

Westermann T, Manthe U.,

*J Chem Phys*136(20), 2012PMID: 22667549

A multi-configurational time-dependent Hartree approach to the eigenstates of multi-well systems.

Wodraszka R, Manthe U.,

PMID: 22462847

Wodraszka R, Manthe U.,

*J Chem Phys*136(12), 2012PMID: 22462847

### 88 References

Data provided by Europe PubMed Central.

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

First-principles theory for the H + CH4 --> H2 + CH3 reaction.

Wu T, Werner HJ, Manthe U.,

PMID: 15618512

Wu T, Werner HJ, Manthe U.,

*Science*306(5705), 2004PMID: 15618512

The reaction rate for dissociative adsorption of N2 on stepped Ru(0001): six-dimensional quantum calculations.

van Harrevelt R, Honkala K, Norskov JK, Manthe U.,

PMID: 16008468

van Harrevelt R, Honkala K, Norskov JK, Manthe U.,

*J Chem Phys*122(23), 2005PMID: 16008468

Accurate potential energy surface and quantum reaction rate calculations for the H+CH4-->H2+CH3 reaction.

Wu T, Werner HJ, Manthe U.,

PMID: 16674135

Wu T, Werner HJ, Manthe U.,

*J Chem Phys*124(16), 2006PMID: 16674135

Accurate quantum calculations of the reaction rates for H/D+CH4.

van Harrevelt R, Nyman G, Manthe U.,

PMID: 17343444

van Harrevelt R, Nyman G, Manthe U.,

*J Chem Phys*126(8), 2007PMID: 17343444

Thermochemistry and accurate quantum reaction rate calculations for H2/HD/D2 + CH3.

Nyman G, van Harrevelt R, Manthe U.,

PMID: 17547382

Nyman G, van Harrevelt R, Manthe U.,

*J Phys Chem A*111(41), 2007PMID: 17547382

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Chemical reaction rates from ring polymer molecular dynamics.

Craig IR, Manolopoulos DE.,

PMID: 15836019

Craig IR, Manolopoulos DE.,

*J Chem Phys*122(8), 2005PMID: 15836019

AUTHOR UNKNOWN, 0

### Export

0 Marked Publications### Web of Science

View record in Web of Science®### Sources

PMID: 22320723

PubMed | Europe PMC