The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110

Schwientek P, Szczepanowski R, Rückert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Pühler A (2012)
BMC Genomics 13(1): 112.

Download
OA
Journal Article | Published | English
Abstract
Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest.
Publishing Year
ISSN
PUB-ID

Cite this

Schwientek P, Szczepanowski R, Rückert C, et al. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics. 2012;13(1): 112.
Schwientek, P., Szczepanowski, R., Rückert, C., Kalinowski, J., Klein, A., Selber, K., Wehmeier, U. F., et al. (2012). The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics, 13(1): 112.
Schwientek, P., Szczepanowski, R., Rückert, C., Kalinowski, J., Klein, A., Selber, K., Wehmeier, U. F., Stoye, J., and Pühler, A. (2012). The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics 13:112.
Schwientek, P., et al., 2012. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics, 13(1): 112.
P. Schwientek, et al., “The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110”, BMC Genomics, vol. 13, 2012, : 112.
Schwientek, P., Szczepanowski, R., Rückert, C., Kalinowski, J., Klein, A., Selber, K., Wehmeier, U.F., Stoye, J., Pühler, A.: The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics. 13, : 112 (2012).
Schwientek, Patrick, Szczepanowski, Rafael, Rückert, Christian, Kalinowski, Jörn, Klein, Andreas, Selber, Klaus, Wehmeier, Udo F., Stoye, Jens, and Pühler, Alfred. “The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110”. BMC Genomics 13.1 (2012): 112.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-11-29T14:13:23Z

This data publication is cited in the following publications:
This publication cites the following data publications:

19 Citations in Europe PMC

Data provided by Europe PubMed Central.

Genome Sequence of the Urethral Isolate Pseudomonas aeruginosa RN21.
Wibberg D, Tielen P, Narten M, Schobert M, Blom J, Schatschneider S, Meyer AK, Neubauer R, Albersmeier A, Albaum S, Jahn M, Goesmann A, Vorholter FJ, Puhler A, Jahn D., Genome Announc 3(4), 2015
PMID: 26184943
Draft Genome Sequence of Pseudomonas aeruginosa Strain WS136, a Highly Cytotoxic ExoS-Positive Wound Isolate Recovered from Pyoderma Gangrenosum.
Arnold M, Wibberg D, Blom J, Schatschneider S, Winkler A, Kutter Y, Ruckert C, Albersmeier A, Albaum S, Goesmann A, Zange S, Heesemann J, Puhler A, Hogardt M, Vorholter FJ., Genome Announc 3(4), 2015
PMID: 26139712
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 125(), 2015
PMID: 25896738
Genome Sequence of the Urethral Catheter Isolate Pseudomonas aeruginosa MH19.
Vorholter FJ, Tielen P, Wibberg D, Narten M, Schobert M, Tupker R, Blom J, Schatschneider S, Winkler A, Albersmeier A, Goesmann A, Puhler A, Jahn D., Genome Announc 3(2), 2015
PMID: 25767242
The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean.
Vinardell JM, Acosta-Jurado S, Zehner S, Gottfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Perez-Montano F, Schneiker-Bekel S, Serrania J, Szczepanowski R, Buendia AM, Lloret J, Bonilla I, Puhler A, Ruiz-Sainz JE, Weidner S., Mol. Plant Microbe Interact. 28(7), 2015
PMID: 25675256
Complete genome sequence of the actinobacterium Streptomyces glaucescens GLA.O (DSM 40922) consisting of a linear chromosome and one linear plasmid.
Ortseifen V, Winkler A, Albersmeier A, Wendler S, Puhler A, Kalinowski J, Ruckert C., J. Biotechnol. 194(), 2015
PMID: 25499805
Draft Genome Sequence of Pseudomonas aeruginosa Strain WS394, a Multidrug-Resistant and Highly Cytotoxic Wound Isolate from Chronic Ulcus Cruris.
Vorholter FJ, Arnold M, Wibberg D, Blom J, Winkler A, Viehoever P, Albersmeier A, Goesmann A, Zange S, Heesemann J, Puhler A, Hogardt M., Genome Announc 2(6), 2014
PMID: 25523779
Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17(T) (=DSM 44213T) producing (S,S)-N,N'-ethylenediaminedisuccinic acid.
Stegmann E, Albersmeier A, Spohn M, Gert H, Weber T, Wohlleben W, Kalinowski J, Ruckert C., J. Biotechnol. 189(), 2014
PMID: 25193710
Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
Wendler S, Ortseifen V, Persicke M, Klein A, Neshat A, Niehaus K, Schneiker-Bekel S, Walter F, Wehmeier UF, Kalinowski J, Puhler A., J. Biotechnol. 191(), 2014
PMID: 25169663
Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential.
Ian E, Malko DB, Sekurova ON, Bredholt H, Ruckert C, Borisova ME, Albersmeier A, Kalinowski J, Gelfand MS, Zotchev SB., PLoS ONE 9(5), 2014
PMID: 24819608
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
Schwientek P, Neshat A, Kalinowski J, Klein A, Ruckert C, Schneiker-Bekel S, Wendler S, Stoye J, Puhler A., J. Biotechnol. 190(), 2014
PMID: 24642337
Genome Sequence of the Acute Urethral Catheter Isolate Pseudomonas aeruginosa MH38.
Wibberg D, Tielen P, Blom J, Rosin N, Schobert M, Tupker R, Schatschneider S, Spilker D, Albersmeier A, Goesmann A, Vorholter FJ, Puhler A, Jahn D., Genome Announc 2(2), 2014
PMID: 24625869
A novel teichuronic acid, the major polymer from the cell wall of Actinoplanes lobatus VKM Ac-676(T.).
Shashkov AS, Streshinskaya GM, Tul'skaya EM, Kozlova YI, Senchenkova SN, Evtushenko LI., Carbohydr. Res. 387(), 2014
PMID: 24531391
MbtH homology codes to identify gifted microbes for genome mining.
Baltz RH., J. Ind. Microbiol. Biotechnol. 41(2), 2014
PMID: 24197465
The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection.
Wichmann F, Vorholter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kolliker R., Mol. Plant Pathol. 14(6), 2013
PMID: 23578314
Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14.
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A., J. Biotechnol. 167(2), 2013
PMID: 23280342
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
Schwientek P, Wendler S, Neshat A, Eirich C, Ruckert C, Klein A, Wehmeier UF, Kalinowski J, Stoye J, Puhler A., J. Biotechnol. 167(2), 2013
PMID: 23142701
Complete genome sequence of the motile actinomycete Actinoplanes missouriensis 431(T) (= NBRC 102363(T)).
Yamamura H, Ohnishi Y, Ishikawa J, Ichikawa N, Ikeda H, Sekine M, Harada T, Horinouchi S, Otoguro M, Tamura T, Suzuki K, Hoshino Y, Arisawa A, Nakagawa Y, Fujita N, Hayakawa M., Stand Genomic Sci 7(2), 2012
PMID: 23407331

120 References

Data provided by Europe PubMed Central.

REGANOR: a gene prediction server for prokaryotic genomes and a database of high quality gene predictions for prokaryotes.
Linke B, McHardy AC, Neuweger H, Krause L, Meyer F., Appl. Bioinformatics 5(3), 2006
PMID: 16922601
Improved microbial gene identification with GLIMMER.
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL., Nucleic Acids Res. 27(23), 1999
PMID: 10556321
CRITICA: coding region identification tool invoking comparative analysis.
Badger JH, Olsen GJ, Woese CR., Mol. Biol. Evol. 16(4), 1999
PMID: 10331277
High-performance searching of biosequence databases.
Coulson A., Trends Biotechnol. 12(3), 1994
PMID: 7764827
CDD: a database of conserved domain alignments with links to domain three-dimensional structure.
Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH., Nucleic Acids Res. 30(1), 2002
PMID: 11752315
The ENZYME database in 2000.
Bairoch A., Nucleic Acids Res. 28(1), 2000
PMID: 10592255
Enzyme-specific profiles for genome annotation: PRIAM.
Claudel-Renard C, Chevalet C, Faraut T, Kahn D., Nucleic Acids Res. 31(22), 2003
PMID: 14602924
KEGG: kyoto encyclopedia of genes and genomes.
Kanehisa M, Goto S., Nucleic Acids Res. 28(1), 2000
PMID: 10592173
From genomics to chemical genomics: new developments in KEGG.
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381885
The COG database: an updated version includes eukaryotes
AUTHOR UNKNOWN, 2003
A hidden Markov model for predicting transmembrane helices in protein sequences.
Sonnhammer EL, von Heijne G, Krogh A., Proc Int Conf Intell Syst Mol Biol 6(), 1998
PMID: 9783223
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Nielsen H, Engelbrecht J, Brunak S, von Heijne G., Protein Eng. 10(1), 1997
PMID: 9051728
Prediction of signal peptides and signal anchors by a hidden Markov model.
Nielsen H, Krogh A., Proc Int Conf Intell Syst Mol Biol 6(), 1998
PMID: 9783217
Improved prediction of signal peptides: SignalP 3.0.
Bendtsen JD, Nielsen H, von Heijne G, Brunak S., J. Mol. Biol. 340(4), 2004
PMID: 15223320
Non-classical protein secretion in bacteria.
Bendtsen JD, Kiemer L, Fausboll A, Brunak S., BMC Microbiol. 5(), 2005
PMID: 16212653
Operons in Escherichia coli: genomic analyses and predictions.
Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J., Proc. Natl. Acad. Sci. U.S.A. 97(12), 2000
PMID: 10823905
MUSCLE: a multiple sequence alignment method with reduced time and space complexity
AUTHOR UNKNOWN, 2004

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22443545
PubMed | Europe PMC

Search this title in

Google Scholar