Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization

Sallam A, Kast A, Przybilla S, Meiswinkel T, Steinbüchel A (2009)
Applied and environmental microbiology 75(1): 29-38.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
A triphasic process was developed for the production of beta dipeptides from cyanophycin (CGP) on a large scale. Phase I comprises an optimized acid extraction method for technical isolation of CGP from biomass. It yielded highly purified CGP consisting of aspartate, arginine, and a little lysine. Phase II comprises the fermentative production of an extracellular CGPase (CphE(al)) from Pseudomonas alcaligenes strain DIP1 on a 500-liter scale in mineral salts medium, with citrate as the sole carbon source and CGP as an inductor. During optimization, it was shown that 2 g liter(-1) citrate, pH 6.5, and 37 degrees C are ideal parameters for CphE(al) production. Maximum enzyme yields were obtained after induction in the presence of 50 mg liter(-1) CGP or CGP dipeptides for 5 or 3 h, respectively. Aspartate at a concentration of 4 g liter(-1) induced CphE(al) production with only about 30% efficiency in comparison to that with CGP. CphE(al) was purified utilizing its affinity for the substrate and its specific binding to CGP. CphE(al) turned out to be a serine protease with maximum activity at 50 degrees C and at pH 7 to 8.5. Phase III comprises degradation of CGP to beta-aspartate-arginine and beta-aspartate-lysine dipeptides with a purity of over 99% (by thin-layer chromatography and high-performance liquid chromatography), employing a crude CphE(al) preparation. Optimum degradation parameters were 100 g liter(-1) CGP, 10 g liter(-1) crude CphE(al) powder, and 4 h of incubation at 50 degrees C. The overall efficiency of phase III was 91%, while 78% (wt/wt) of the used CphE(al) powder with sustained activity toward CGP was recovered. The optimized process was performed with industrial materials and equipment and is applicable to any desired scale.
Erscheinungsjahr
Zeitschriftentitel
Applied and environmental microbiology
Band
75
Zeitschriftennummer
1
Seite
29-38
ISSN
PUB-ID

Zitieren

Sallam A, Kast A, Przybilla S, Meiswinkel T, Steinbüchel A. Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Applied and environmental microbiology. 2009;75(1):29-38.
Sallam, A., Kast, A., Przybilla, S., Meiswinkel, T., & Steinbüchel, A. (2009). Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Applied and environmental microbiology, 75(1), 29-38. doi:10.1128/AEM.01344-08
Sallam, A., Kast, A., Przybilla, S., Meiswinkel, T., and Steinbüchel, A. (2009). Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Applied and environmental microbiology 75, 29-38.
Sallam, A., et al., 2009. Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Applied and environmental microbiology, 75(1), p 29-38.
A. Sallam, et al., “Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization”, Applied and environmental microbiology, vol. 75, 2009, pp. 29-38.
Sallam, A., Kast, A., Przybilla, S., Meiswinkel, T., Steinbüchel, A.: Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Applied and environmental microbiology. 75, 29-38 (2009).
Sallam, Ahmed, Kast, Alene, Przybilla, Simon, Meiswinkel, Tobias, and Steinbüchel, Alexander. “Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization”. Applied and environmental microbiology 75.1 (2009): 29-38.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

In silico characterization of a cyanobacterial plant-type isoaspartyl aminopeptidase/asparaginase.
da Silva RC, Siqueira AS, Lima ARJ, de Melo Lima A, Santos AS, Aguiar DCF, Gonçalves EC., J Mol Model 24(5), 2018
PMID: 29619654
Stable production of cyanophycinase in Nicotiana benthamiana and its functionality to hydrolyse cyanophycin in the murine intestine.
Ponndorf D, Ehmke S, Walliser B, Thoss K, Unger C, Görs S, Daş G, Metges CC, Broer I, Nausch H., Plant Biotechnol J 15(5), 2017
PMID: 27808470
Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli.
Tseng WC, Fang TY, Hsieh YC, Chen CY, Li MC., J Biotechnol 249(), 2017
PMID: 28377282
Guanidination of soluble lysine-rich cyanophycin yields a homoarginine-containing polyamide.
Frommeyer M, Bergander K, Steinbüchel A., Appl Environ Microbiol 80(8), 2014
PMID: 24509932
Isolation and characterization of a novel cyanophycin synthetase from a deep-sea sediment metagenomic library.
Du J, Li L, Ding X, Hu H, Lu Y, Zhou S., Appl Microbiol Biotechnol 97(19), 2013
PMID: 23579730
Heterologous expression of Anabaena sp. PCC7120 cyanophycin metabolism genes cphA1 and cphB1 in Sinorhizobium (Ensifer) meliloti 1021.
Abd-El-Karem Y, Elbers T, Reichelt R, Steinbüchel A., Appl Microbiol Biotechnol 89(4), 2011
PMID: 20938772
Poly(aspartate) hydrolases: biochemical properties and applications.
Hiraishi T, Maeda M., Appl Microbiol Biotechnol 91(4), 2011
PMID: 21713512
Production optimization of cyanophycinase ChpEal from Pseudomonas alcaligenes DIP1.
Sallam A, Kalkandzhiev D, Steinbüchel A., AMB Express 1(1), 2011
PMID: 22060187
Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases.
Steinle A, Witthoff S, Krause JP, Steinbüchel A., Appl Environ Microbiol 76(4), 2010
PMID: 20038708
Nanostructured bacterial materials for innovative medicines.
Rodríguez-Carmona E, Villaverde A., Trends Microbiol 18(9), 2010
PMID: 20674365
The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase.
Law AM, Lai SW, Tavares J, Kimber MS., J Mol Biol 392(2), 2009
PMID: 19591842

51 References

Daten bereitgestellt von Europe PubMed Central.

Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308.
Aboulmagd E, Oppermann-Sanio FB, Steinbuchel A., Arch. Microbiol. 174(5), 2000
PMID: 11131019

AUTHOR UNKNOWN, 1995
Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308.
Allen MM, Hutchison F, Weathers PJ., J. Bacteriol. 141(2), 1980
PMID: 6767688

AUTHOR UNKNOWN, 1988

AUTHOR UNKNOWN, 1887
The clinical use of arginine aspartate in male infertility.
De Aloysio D, Mantuano R, Mauloni M, Nicoletti G., Acta Eur. Fertil. 13(3), 1982
PMID: 6820754

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 1966
Protamylasse, a residual compound of industrial starch production, provides a suitable medium for large-scale cyanophycin production.
Elbahloul Y, Frey K, Sanders J, Steinbuchel A., Appl. Environ. Microbiol. 71(12), 2005
PMID: 16332748
Technical-scale production of cyanophycin with recombinant strains of Escherichia coli.
Frey KM, Oppermann-Sanio FB, Schmidt H, Steinbuchel A., Appl. Environ. Microbiol. 68(7), 2002
PMID: 12089018
Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain.
Gerritse G, Hommes RW, Quax WJ., Appl. Environ. Microbiol. 64(7), 1998
PMID: 9647843

AUTHOR UNKNOWN, 1981

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 1980

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 1995
Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria.
Li H, Sherman DM, Bao S, Sherman LA., Arch. Microbiol. 176(1-2), 2001
PMID: 11479698
Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium.
Liotenberg S, Campbell D, Rippka R, Houmard J, de Marsac NT., Microbiology (Reading, Engl.) 142 ( Pt 3)(), 1996
PMID: 8868436

AUTHOR UNKNOWN, 1990
Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production.
Mooibroek H, Oosterhuis N, Giuseppin M, Toonen M, Franssen H, Scott E, Sanders J, Steinbuchel A., Appl. Microbiol. Biotechnol. 77(2), 2007
PMID: 17876577

AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 1994
Microbial degradation of poly(amino acid)s.
Obst M, Steinbuchel A., Biomacromolecules 5(4), 2004
PMID: 15244426

AUTHOR UNKNOWN, 2006
Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production.
Oppermann-Sanio FB, Steinbuchel A., Naturwissenschaften 89(1), 2002
PMID: 12008968

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 1989

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 1979

AUTHOR UNKNOWN, 2000

AUTHOR UNKNOWN, 1987

AUTHOR UNKNOWN, 2000
Break of unresponsiveness of delayed-type hypersensitivity to sheep red blood cells by pertussis toxin.
Tamura S, Tanaka H, Takayama R, Sato H, Sato Y, Uchida N., Cell. Immunol. 92(2), 1985
PMID: 3158403
Cyanophycin production in a phycoerythrin-containing marine synechococcus strain of unusual phylogenetic affinity.
Wingard LL, Miller SR, Sellker JM, Stenn E, Allen MM, Wood AM., Appl. Environ. Microbiol. 68(4), 2002
PMID: 11916695

AUTHOR UNKNOWN, 1990

AUTHOR UNKNOWN, 2002

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18978083
PubMed | Europe PMC

Suchen in

Google Scholar