Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5

Makrypidi G, Damme M, Müller-Loennies S, Trusch M, Schmidt B, Schlüter H, Heeren J, Lübke T, Saftig P, Braulke T (2012)
Molecular and cellular biology 32(4): 774-782.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5(-/-)) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5(-/-) mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.
Publishing Year
ISSN
PUB-ID

Cite this

Makrypidi G, Damme M, Müller-Loennies S, et al. Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology. 2012;32(4):774-782.
Makrypidi, G., Damme, M., Müller-Loennies, S., Trusch, M., Schmidt, B., Schlüter, H., Heeren, J., et al. (2012). Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology, 32(4), 774-782.
Makrypidi, G., Damme, M., Müller-Loennies, S., Trusch, M., Schmidt, B., Schlüter, H., Heeren, J., Lübke, T., Saftig, P., and Braulke, T. (2012). Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology 32, 774-782.
Makrypidi, G., et al., 2012. Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology, 32(4), p 774-782.
G. Makrypidi, et al., “Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5”, Molecular and cellular biology, vol. 32, 2012, pp. 774-782.
Makrypidi, G., Damme, M., Müller-Loennies, S., Trusch, M., Schmidt, B., Schlüter, H., Heeren, J., Lübke, T., Saftig, P., Braulke, T.: Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology. 32, 774-782 (2012).
Makrypidi, Georgia, Damme, Markus, Müller-Loennies, Sven, Trusch, Maria, Schmidt, Bernhard, Schlüter, Hartmut, Heeren, Joerg, Lübke, Torben, Saftig, Paul, and Braulke, Thomas. “Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5”. Molecular and cellular biology 32.4 (2012): 774-782.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse.
Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H., Int J Mol Sci 17(1), 2016
PMID: 26784182
Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2.
Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M., Traffic 16(10), 2015
PMID: 26219725
Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting.
Markmann S, Thelen M, Cornils K, Schweizer M, Brocke-Ahmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K., Traffic 16(7), 2015
PMID: 25786328
Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.
Schmiesing J, Schluter H, Ullrich K, Braulke T, Muhlhausen C., PLoS ONE 9(2), 2014
PMID: 24498361
Regulation of lysosome biogenesis and functions in osteoclasts.
Lacombe J, Karsenty G, Ferron M., Cell Cycle 12(17), 2013
PMID: 23966172
Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice.
Sleat DE, Sun P, Wiseman JA, Huang L, El-Banna M, Zheng H, Moore DF, Lobel P., Mol. Cell Proteomics 12(7), 2013
PMID: 23478313
Exploring the unique N-glycome of the opportunistic human pathogen Acanthamoeba.
Schiller B, Makrypidi G, Razzazi-Fazeli E, Paschinger K, Walochnik J, Wilson IB., J. Biol. Chem. 287(52), 2012
PMID: 23139421

55 References

Data provided by Europe PubMed Central.

Structural studies of phosphorylated high mannose-type oligosaccharides.
Varki A, Kornfeld S., J. Biol. Chem. 255(22), 1980
PMID: 7430158
[Effect of the injection of Triton WR 1339 on the hepatic lysosomes of the rat.]
WATTIAUX R, WIBO M, BAUDHUIN P., Arch. Int. Physiol. Biochim. 71(), 1963
PMID: 13999241
Nucleolin: acharan sulfate-binding protein on the surface of cancer cells.
Joo EJ, ten Dam GB, van Kuppevelt TH, Toida T, Linhardt RJ, Kim YS., Glycobiology 15(1), 2005
PMID: 15329357
Regulation of sterol transport between membranes and NPC2.
Xu Z, Farver W, Kodukula S, Storch J., Biochemistry 47(42), 2008
PMID: 18823126

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22158965
PubMed | Europe PMC

Search this title in

Google Scholar