$\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules

Ahsendorf T (2011)
Bielefeld: Universität.

Download
OA
Bielefeld Dissertation | English
Supervisor
Zink, Thomas
Year
PUB-ID

Cite this

Ahsendorf T. $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules. Bielefeld: Universität; 2011.
Ahsendorf, T. (2011). $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules. Bielefeld: Universität.
Ahsendorf, T. (2011). $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules. Bielefeld: Universität.
Ahsendorf, T., 2011. $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules, Bielefeld: Universität.
T. Ahsendorf, $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules, Bielefeld: Universität, 2011.
Ahsendorf, T.: $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules. Universität, Bielefeld (2011).
Ahsendorf, Tobias. $\mathcal{O}$-displays and $\pi$-divisible formal $\mathcal{O}$-modules. Bielefeld: Universität, 2011.
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2012-02-17 07:07:01

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar