Candidate genes within a 143 kb region of the flower sex locus in Vitis

Fechter I, Hausmann L, Daum M, Rosleff Sörensen T, Viehöver P, Weisshaar B, Töpfer R (2012)
Molecular Genetics and Genomics 287(3): 247-259.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Wild Vitis species are dioecious plants, while the cultivated counterpart, Vitis vinifera subspec. vinifera, generally shows hermaphroditic flowers. In Vitis the genetic determinants of flower sex have previously been mapped to a region on chromosome 2. In a combined strategy of map-based cloning and the use of the publicly available grapevine reference genome sequence, the structure of the grapevine flower sex locus has been elucidated with the subsequent identification of candidate genes which might be involved in the development of the different flower sex types. In a fine mapping approach, the sex locus in grapevine was narrowed down using a population derived from a cross of a genotype with a Vitis vinifera background ('Schiava Grossa' × 'Riesling') with the male rootstock cv. 'Börner' (V. riparia × V. cinerea). A physical map of 143 kb was established from BAC clones spanning the 0.5 cM region defined by the closest flanking recombination break points. Sequencing and gene annotation of the entire region revealed several candidate genes with a potential impact on flower sex formation. One of the presumed candidate genes, an adenine phosphoribosyltransferase, was analysed in more detail. The results led to the development of a marker for the presence or absence of the female alleles, while the male and hermaphroditic alleles are still to be differentiated. The impact of other candidate genes is discussed, especially with regard to plant hormone actions. The markers developed will permit the selection of female breeding lines which do not require laborious emasculation thus considerably simplifying grapevine breeding. The genetic finger prints displayed that our cultivated grapevines frequently carry a female allele while homozygous hermaphrodites are rare.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Fechter I, Hausmann L, Daum M, et al. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics. 2012;287(3):247-259.
Fechter, I., Hausmann, L., Daum, M., Rosleff Sörensen, T., Viehöver, P., Weisshaar, B., & Töpfer, R. (2012). Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics, 287(3), 247-259.
Fechter, I., Hausmann, L., Daum, M., Rosleff Sörensen, T., Viehöver, P., Weisshaar, B., and Töpfer, R. (2012). Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics 287, 247-259.
Fechter, I., et al., 2012. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics, 287(3), p 247-259.
I. Fechter, et al., “Candidate genes within a 143 kb region of the flower sex locus in Vitis”, Molecular Genetics and Genomics, vol. 287, 2012, pp. 247-259.
Fechter, I., Hausmann, L., Daum, M., Rosleff Sörensen, T., Viehöver, P., Weisshaar, B., Töpfer, R.: Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics. 287, 247-259 (2012).
Fechter, Iris, Hausmann, Ludger, Daum, Margrit, Rosleff Sörensen, Thomas, Viehöver, Prisca, Weisshaar, Bernd, and Töpfer, Reinhard. “Candidate genes within a 143 kb region of the flower sex locus in Vitis”. Molecular Genetics and Genomics 287.3 (2012): 247-259.
This data publication is cited in the following publications:
This publication cites the following data publications:

12 Citations in Europe PMC

Data provided by Europe PubMed Central.

Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine.
Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L., PLoS ONE 10(8), 2015
PMID: 26244767
Homomorphic plant sex chromosomes are coming of age.
Filatov DA., Mol. Ecol. 24(13), 2015
PMID: 26113024
The genomics of plant sex chromosomes.
Vyskot B, Hobza R., Plant Sci. 236(), 2015
PMID: 26025526
Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus).
Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nunez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QC., Mol. Ecol. 24(13), 2015
PMID: 25728270
A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines.
Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M, Ivorra S, Maghradze D, Arroyo-Garcia R, Chatelet P, This P, Terral JF, Bacilieri R., BMC Plant Biol. 14(), 2014
PMID: 25179565
QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis.
Fechter I, Hausmann L, Zyprian E, Daum M, Holtgrawe D, Weisshaar B, Topfer R., Theor. Appl. Genet. 127(9), 2014
PMID: 25112201
Sex determination in flowering plants: papaya as a model system.
Aryal R, Ming R., Plant Sci. 217-218(), 2014
PMID: 24467896
Identification of mildew resistance in wild and cultivated Central Asian grape germplasm.
Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA., BMC Plant Biol. 13(), 2013
PMID: 24093598
Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants.
Battilana J, Lorenzi S, Moreira FM, Moreno-Sanz P, Failla O, Emanuelli F, Grando MS., Mol. Biotechnol. 54(3), 2013
PMID: 23532385
Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.).
Shi L, Weng J, Liu C, Song X, Miao H, Hao Z, Xie C, Li M, Zhang D, Bai L, Pan G, Li X, Zhang S., Mol. Genet. Genomics 288(3-4), 2013
PMID: 23474695
Plant sex chromosome evolution.
Charlesworth D., J. Exp. Bot. 64(2), 2013
PMID: 23125359

49 References

Data provided by Europe PubMed Central.


L, Vitis 50(), 2011
Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants.
Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, Shi Q, Jia Z, Zhang W, Chen H, Si L, Zhu L, Cai R., Genetics 182(4), 2009
PMID: 19474195

D, Mol Gen Genomics 276(), 2006

AUTHOR UNKNOWN, 0
Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine.
Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S., Theor. Appl. Genet. 118(7), 2009
PMID: 19238349
A transposon-induced epigenetic change leads to sex determination in melon.
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A., Nature 461(7267), 2009
PMID: 19847267
CYTOKININ METABOLISM AND ACTION.
Mok DW, Mok MC., Annu. Rev. Plant Physiol. Plant Mol. Biol. 52(), 2001
PMID: 11337393
Sex Conversion in a Male Vitis vinifera L. by a Kinin.
Negi SS, Olmo HP., Science 152(3729), 1966
PMID: 17755400

SS, Vitis 10(), 1971
A microsatellite marker based framework linkage map of Vitis vinifera L.
Riaz S, Dangl GS, Edwards KJ, Meredith CP., Theor. Appl. Genet. 108(5), 2004
PMID: 14605808

A, Mol Gen Genomics 278(), 2007

WD, Am Nat 50(), 1916

AUTHOR UNKNOWN, 0
Transcriptome profile analysis of floral sex determination in cucumber.
Wu T, Qin Z, Zhou X, Feng Z, Du Y., J. Plant Physiol. 167(11), 2010
PMID: 20303197
A role for flavin monooxygenase-like enzymes in auxin biosynthesis.
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J., Science 291(5502), 2001
PMID: 11209081
Cloning and characterization of a second form of the rice adenine phosphoribosyl transferase gene (OsAPT2) and its association with TGMS.
Zhou CJ, Li J, Zou JC, Liang FS, Ye CJ, Jin DM, Weng ML, Wang B., Plant Mol. Biol. 60(3), 2006
PMID: 16514560

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22258113
PubMed | Europe PMC

Search this title in

Google Scholar