Conformational Flexibility of Glycosylated Peptides

Bollmann S, Burgert A, Plattner C, Nagel L, Sewald N, Löllmann M, Sauer M, Doose S (2011)
ChemPhysChem 12(16): 2907-2911.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
With a twist: The conformational dynamics of glycosylated glycine–serine peptides is studied using contact- induced fluorescence quenching analysed by fluorescence correlation spectroscopy. End-to-end contact rates on ns–μs timescales reveal enthalpic and entropic contributions to the reduction of contact formation rates in glycopeptides (see picture).
Publishing Year
ISSN
PUB-ID

Cite this

Bollmann S, Burgert A, Plattner C, et al. Conformational Flexibility of Glycosylated Peptides. ChemPhysChem. 2011;12(16):2907-2911.
Bollmann, S., Burgert, A., Plattner, C., Nagel, L., Sewald, N., Löllmann, M., Sauer, M., et al. (2011). Conformational Flexibility of Glycosylated Peptides. ChemPhysChem, 12(16), 2907-2911.
Bollmann, S., Burgert, A., Plattner, C., Nagel, L., Sewald, N., Löllmann, M., Sauer, M., and Doose, S. (2011). Conformational Flexibility of Glycosylated Peptides. ChemPhysChem 12, 2907-2911.
Bollmann, S., et al., 2011. Conformational Flexibility of Glycosylated Peptides. ChemPhysChem, 12(16), p 2907-2911.
S. Bollmann, et al., “Conformational Flexibility of Glycosylated Peptides”, ChemPhysChem, vol. 12, 2011, pp. 2907-2911.
Bollmann, S., Burgert, A., Plattner, C., Nagel, L., Sewald, N., Löllmann, M., Sauer, M., Doose, S.: Conformational Flexibility of Glycosylated Peptides. ChemPhysChem. 12, 2907-2911 (2011).
Bollmann, Stefan, Burgert, Anne, Plattner, Carolin, Nagel, Lilly, Sewald, Norbert, Löllmann, Marc, Sauer, Markus, and Doose, Sören. “Conformational Flexibility of Glycosylated Peptides”. ChemPhysChem 12.16 (2011): 2907-2911.
This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

The roughness of the protein energy landscape results in anomalous diffusion of the polypeptide backbone.
Volk M, Milanesi L, Waltho JP, Hunter CA, Beddard GS., Phys Chem Chem Phys 17(2), 2015
PMID: 25412176
Photophysical processes in single molecule organic fluorescent probes.
Stennett EM, Ciuba MA, Levitus M., Chem Soc Rev 43(4), 2014
PMID: 24141280
Systematic evaluation of fluorescence correlation spectroscopy data analysis on the nanosecond time scale.
Steger K, Bollmann S, Noe F, Doose S., Phys Chem Chem Phys 15(25), 2013
PMID: 23685745

36 References

Data provided by Europe PubMed Central.

Solvent viscosity and friction in protein folding dynamics.
Hagen SJ., Curr. Protein Pept. Sci. 11(5), 2010
PMID: 20426733

Kramers, Physica 7(), 1940

Szabo, J. Chem. Phys. 72(), 1980
Effect of glycosylation on protein folding: a close look at thermodynamic stabilization.
Shental-Bechor D, Levy Y., Proc. Natl. Acad. Sci. U.S.A. 105(24), 2008
PMID: 18550810

AUTHOR UNKNOWN, 0
Backbone-driven collapse in unfolded protein chains.
Teufel DP, Johnson CM, Lum JK, Neuweiler H., J. Mol. Biol. 409(2), 2011
PMID: 21497607

AUTHOR UNKNOWN, 0

Mathlouthi, 1995
Material in PUB:
Part of this Dissertation

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21922630
PubMed | Europe PMC

Search this title in

Google Scholar