RNA-based regulation in the plant circadian clock

Staiger D, Green R (2011)
Trends in Plant Science 16(10): 517-523.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
The circadian clock is an endogenous, approximately 24-h timer that enables plants to anticipate daily changes in their environment and regulates a considerable fraction of the transcriptome. At the core of the circadian system is the oscillator, made up of interconnected feedback loops, involving transcriptional regulation of clock genes and post-translational modification of clock proteins. Recently, it has become clear that post-transcriptional events are also critical for shaping rhythmic mRNA and protein profiles. This review covers regulation at the RNA level of both the core clock and output genes in Arabidopsis (Arabidopsis thaliana), with comparisons with other model organisms. We discuss the role of splicing, mRNA decay and translational regulation as well as recent insights into rhythms of noncoding regulatory RNAs.
Erscheinungsjahr
Zeitschriftentitel
Trends in Plant Science
Band
16
Zeitschriftennummer
10
Seite
517-523
ISSN
PUB-ID

Zitieren

Staiger D, Green R. RNA-based regulation in the plant circadian clock. Trends in Plant Science. 2011;16(10):517-523.
Staiger, D., & Green, R. (2011). RNA-based regulation in the plant circadian clock. Trends in Plant Science, 16(10), 517-523. doi:10.1016/j.tplants.2011.06.002
Staiger, D., and Green, R. (2011). RNA-based regulation in the plant circadian clock. Trends in Plant Science 16, 517-523.
Staiger, D., & Green, R., 2011. RNA-based regulation in the plant circadian clock. Trends in Plant Science, 16(10), p 517-523.
D. Staiger and R. Green, “RNA-based regulation in the plant circadian clock”, Trends in Plant Science, vol. 16, 2011, pp. 517-523.
Staiger, D., Green, R.: RNA-based regulation in the plant circadian clock. Trends in Plant Science. 16, 517-523 (2011).
Staiger, Dorothee, and Green, Rachel. “RNA-based regulation in the plant circadian clock”. Trends in Plant Science 16.10 (2011): 517-523.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

40 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Light Regulation of Alternative Pre-mRNA Splicing in Plants.
Zhang H, Lin C, Gu L., Photochem Photobiol 93(1), 2017
PMID: 27925216
AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants.
Delis C, Krokida A, Tomatsidou A, Tsikou D, Beta RA, Tsioumpekou M, Moustaka J, Stravodimos G, Leonidas DD, Balatsos NA, Papadopoulou KK., RNA Biol 13(1), 2016
PMID: 26619288
Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron.
Ahrazem O, Rubio-Moraga A, Argandoña-Picazo J, Castillo R, Gómez-Gómez L., Plant Mol Biol 91(3), 2016
PMID: 27071403
Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression.
Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B., Mamm Genome 27(7-8), 2016
PMID: 27215643
A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.
Li H, Liang Z, Ding G, Shi L, Xu F, Cai H., Front Plant Sci 7(), 2016
PMID: 27625675
Alternative Splicing Substantially Diversifies the Transcriptome during Early Photomorphogenesis and Correlates with the Energy Availability in Arabidopsis.
Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S, Lee HC, Obermüller DM, Kahles A, Behr J, Sinz FH, Rätsch G, Wachter A., Plant Cell 28(11), 2016
PMID: 27803310
The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex.
Zhang L, Wan Y, Huang G, Wang D, Yu X, Huang G, Guo J., Sci Rep 5(), 2015
PMID: 26306464
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading.
Missra A, Ernest B, Lohoff T, Jia Q, Satterlee J, Ke K, von Arnim AG., Plant Cell 27(9), 2015
PMID: 26392078
Wheels within wheels: the plant circadian system.
Hsu PY, Harmer SL., Trends Plant Sci 19(4), 2014
PMID: 24373845
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Müller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct Plant Biol 41(4), 2014
PMID: IND500739485
Multiple pathways regulate shoot branching.
Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S., Front Plant Sci 5(), 2014
PMID: 25628627
Light Signaling in Bud Outgrowth and Branching in Plants.
Leduc N, Roman H, Barbier F, Péron T, Huché-Thélier L, Lothier J, Demotes-Mainard S, Sakr S., Plants (Basel) 3(2), 2014
PMID: 27135502
Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa.
Chou WL, Huang LF, Fang JC, Yeh CH, Hong CY, Wu SJ, Lu CA., Plant Mol Biol 85(4-5), 2014
PMID: 24805883
De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress.
Mousavi S, Alisoltani A, Shiran B, Fallahi H, Ebrahimie E, Imani A, Houshmand S., PLoS One 9(8), 2014
PMID: 25122458
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
Perez-Santángelo S, Schlaen RG, Yanovsky MJ., Brief Funct Genomics 12(1), 2013
PMID: 23165351
Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis.
Hong S, Kim SA, Guerinot ML, McClung CR., Plant Physiol 161(2), 2013
PMID: 23250624
Global approaches for telling time: omics and the Arabidopsis circadian clock.
Chow BY, Kay SA., Semin Cell Dev Biol 24(5), 2013
PMID: 23435351
Beyond Arabidopsis: the circadian clock in non-model plant species.
McClung CR., Semin Cell Dev Biol 24(5), 2013
PMID: 23466287
Ribonucleoprotein complexes that control circadian clocks.
Wang D, Liang X, Chen X, Guo J., Int J Mol Sci 14(5), 2013
PMID: 23698761
Adaptation of molecular circadian clockwork to environmental changes: a role for alternative splicing and miRNAs.
Bartok O, Kyriacou CP, Levine J, Sehgal A, Kadener S., Proc Biol Sci 280(1765), 2013
PMID: 23825200
Emerging roles for post-transcriptional regulation in circadian clocks.
Lim C, Allada R., Nat Neurosci 16(11), 2013
PMID: 24165681
The regulation of plant growth by the circadian clock.
Farré EM., Plant Biol (Stuttg) 14(3), 2012
PMID: 22284304
Alternative splicing in plants--coming of age.
Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW., Trends Plant Sci 17(10), 2012
PMID: 22743067
Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq.
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A., Plant Physiol 160(2), 2012
PMID: 22837360
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects.
Jones MA, Williams BA, McNicol J, Simpson CG, Brown JW, Harmer SL., Plant Cell 24(10), 2012
PMID: 23110899
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation.
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M., Elife 1(), 2012
PMID: 23150795

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21782493
PubMed | Europe PMC

Suchen in

Google Scholar