RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases

Töpel T, Scheible D, Trefz F, Hofestädt R (2010)
Human Mutation 31(1): E1081-E1088.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
RAMEDIS is a manually curated resource of human variations and corresponding phenotypes for rare metabolic diseases. The system is based on separate case reports that comprehensively describe various aspects of anonymous case study, e. g. molecular genetics, symptoms, lab findings, treatments, etc. Scientists are able to make use of the database by a simple and intuitive web-based user interface with a common web browser. A registration or login is not necessary for a full reading access to the system content. Furthermore, a mutation analysis table summarizes the submitted variations per diagnosis and enables direct access to detailed information of corresponding case reports. Interested scientists may open an account to submit their case reports in order to share valuable genotype-phenotype information efficiently with the scientific community. Currently, 794 case reports have been submitted, describing 92 different genetic metabolic diseases. To enhance the comprehensive coverage of available knowledge in the field of rare metabolic diseases, all case reports are linked to integrated information from public molecular biology databases like KEGG, OMIM and ENZYME. This information upgrades the case reports by related data of the corresponding diseases as well as involved enzymes, genes and metabolic pathways. Academic users may freely use the RAMEDIS system at http://www.ramedis.de. (C)2009 Wiley-Liss, Inc.
Erscheinungsjahr
Zeitschriftentitel
Human Mutation
Band
31
Zeitschriftennummer
1
Seite
E1081-E1088
ISSN
eISSN
PUB-ID

Zitieren

Töpel T, Scheible D, Trefz F, Hofestädt R. RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases. Human Mutation. 2010;31(1):E1081-E1088.
Töpel, T., Scheible, D., Trefz, F., & Hofestädt, R. (2010). RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases. Human Mutation, 31(1), E1081-E1088. doi:10.1002/humu.21169
Töpel, T., Scheible, D., Trefz, F., and Hofestädt, R. (2010). RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases. Human Mutation 31, E1081-E1088.
Töpel, T., et al., 2010. RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases. Human Mutation, 31(1), p E1081-E1088.
T. Töpel, et al., “RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases”, Human Mutation, vol. 31, 2010, pp. E1081-E1088.
Töpel, T., Scheible, D., Trefz, F., Hofestädt, R.: RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases. Human Mutation. 31, E1081-E1088 (2010).
Töpel, Thoralf, Scheible, Dagmar, Trefz, Friedrich, and Hofestädt, Ralf. “RAMEDIS: a comprehensive information system for variations and corresponding phenotypes of rare metabolic diseases”. Human Mutation 31.1 (2010): E1081-E1088.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism.
Lee JJY, Wasserman WW, Hoffmann GF, van Karnebeek CDM, Blau N., Genet Med 20(1), 2018
PMID: 28726811
Rare Diseases: Drug Discovery and Informatics Resource.
Zhao M, Wei DQ., Interdiscip Sci 10(1), 2018
PMID: 29094320
Computer-assisted initial diagnosis of rare diseases.
Alves R, Piñol M, Vilaplana J, Teixidó I, Cruz J, Comas J, Vilaprinyo E, Sorribas A, Solsona F., PeerJ 4(), 2016
PMID: 27547534

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19953641
PubMed | Europe PMC

Suchen in

Google Scholar