Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches

Krämer O, Klausing S, Noll T (2010)
Applied Microbiology and Biotechnology 88(2): 425-436.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Due to the increasing demand for recombinant proteins, the interest in mammalian cell culture, especially of Chinese hamster ovary cells, grows rapidly. This is accompanied by the desire to improve cell lines in order to achieve higher titers and a better product quality. Until recently, most cell line development procedures were based on random integration and gene amplification, but several methods for targeted genetic modification of cells have been developed. Some of those are homologous recombination, RNA interference and zinc-finger nucleases. Especially the latter two have evolved considerably and will soon become a standard for cell line engineering in research and industrial application. This review presents an overview of established as well as new and promising techniques for targeted genetic modification of mammalian cells.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Krämer O, Klausing S, Noll T. Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology. 2010;88(2):425-436.
Krämer, O., Klausing, S., & Noll, T. (2010). Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology, 88(2), 425-436.
Krämer, O., Klausing, S., and Noll, T. (2010). Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology 88, 425-436.
Krämer, O., Klausing, S., & Noll, T., 2010. Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology, 88(2), p 425-436.
O. Krämer, S. Klausing, and T. Noll, “Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches”, Applied Microbiology and Biotechnology, vol. 88, 2010, pp. 425-436.
Krämer, O., Klausing, S., Noll, T.: Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches. Applied Microbiology and Biotechnology. 88, 425-436 (2010).
Krämer, Oliver, Klausing, Sandra, and Noll, Thomas. “Methods in mammalian cell line engineering: from random mutagenesis to sequence specific approaches”. Applied Microbiology and Biotechnology 88.2 (2010): 425-436.
This data publication is cited in the following publications:
This publication cites the following data publications:

15 Citations in Europe PMC

Data provided by Europe PubMed Central.

CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H., Biotechnol J 10(7), 2015
PMID: 26058577
miR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality.
Fischer S, Paul AJ, Wagner A, Mathias S, Geiss M, Schandock F, Domnowski M, Zimmermann J, Handrick R, Hesse F, Otte K., Biotechnol. Bioeng. 112(10), 2015
PMID: 25997799
Development of small scale cell culture models for screening poloxamer 188 lot-to-lot variation.
Peng H, Hall KM, Clayton B, Wiltberger K, Hu W, Hughes E, Kane J, Ney R, Ryll T., Biotechnol. Prog. 30(6), 2014
PMID: 25098761
The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy.
Yang Z, Halim A, Narimatsu Y, Jitendra Joshi H, Steentoft C, Schjoldager KT, Alder Schulz M, Sealover NR, Kayser KJ, Paul Bennett E, Levery SB, Vakhrushev SY, Clausen H., Mol. Cell Proteomics 13(12), 2014
PMID: 25092905
A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells.
Fischer S, Buck T, Wagner A, Ehrhart C, Giancaterino J, Mang S, Schad M, Mathias S, Aschrafi A, Handrick R, Otte K., Biotechnol J 9(10), 2014
PMID: 25061012
Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.
Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM., Biotechnol. Prog. 30(3), 2014
PMID: 24574326
Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers.
Yang WC, Lu J, Nguyen NB, Zhang A, Healy NV, Kshirsagar R, Ryll T, Huang YM., Mol. Biotechnol. 56(5), 2014
PMID: 24381145
Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter.
Fan L, Kadura I, Krebs LE, Larson JL, Bowden DM, Frye CC., J. Biotechnol. 168(4), 2013
PMID: 23994266
Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells.
Druz A, Son YJ, Betenbaugh M, Shiloach J., Metab. Eng. 16(), 2013
PMID: 23376592
Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics.
Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Muller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Puhler A, Clynes M, Borth N., Biotechnol. Bioeng. 109(6), 2012
PMID: 22389098
Genomics in mammalian cell culture bioprocessing.
Wuest DM, Harcum SW, Lee KH., Biotechnol. Adv. 30(3), 2012
PMID: 22079893
Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering.
Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Honer Zu Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J., J. Biotechnol. 153(1-2), 2011
PMID: 21392545

94 References

Data provided by Europe PubMed Central.

Perspective: machines for RNAi.
Tomari Y, Zamore PD., Genes Dev. 19(5), 2005
PMID: 15741316
Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity.
Urlaub G, Chasin LA., Proc. Natl. Acad. Sci. U.S.A. 77(7), 1980
PMID: 6933469
Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.
Urlaub G, Kas E, Carothers AM, Chasin LA., Cell 33(2), 1983
PMID: 6305508
Highly efficient endogenous human gene correction using designed zinc-finger nucleases.
Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC., Nature 435(7042), 2005
PMID: 15806097
Manipulating the mammalian genome by homologous recombination.
Vasquez KM, Marburger K, Intody Z, Wilson JH., Proc. Natl. Acad. Sci. U.S.A. 98(15), 2001
PMID: 11459982
Bcl2 negatively regulates DNA double-strand-break repair through a nonhomologous end-joining pathway.
Wang Q, Gao F, May WS, Zhang Y, Flagg T, Deng X., Mol. Cell 29(4), 2008
PMID: 18313386
EST sequencing for gene discovery in Chinese hamster ovary cells.
Wlaschin KF, Nissom PM, Gatti Mde L, Ong PF, Arleen S, Tan KS, Rink A, Cham B, Wong K, Yap M, Hu WS., Biotechnol. Bioeng. 91(5), 2005
PMID: 16003777
DNA recognition by Cys2His2 zinc finger proteins.
Wolfe SA, Nekludova L, Pabo CO., Annu Rev Biophys Biomol Struct 29(), 2000
PMID: 10940247
Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures.
Wong DC, Wong KT, Lee YY, Morin PN, Heng CK, Yap MG., Biotechnol. Bioeng. 94(2), 2006
PMID: 16570314
Targeting early apoptotic genes in batch and fed-batch CHO cell cultures.
Wong DC, Wong KT, Nissom PM, Heng CK, Yap MG., Biotechnol. Bioeng. 95(3), 2006
PMID: 16894638
The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes.
Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B., J. Cell. Sci. 120(Pt 17), 2007
PMID: 17715156
Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M., Biotechnol. Bioeng. 87(5), 2004
PMID: 15352059
Lentiviral integration preferences in transgenic mice.
Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AW., Genesis 46(12), 2008
PMID: 18821598
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
Yeom KH, Lee Y, Han J, Suh MR, Kim VN., Nucleic Acids Res. 34(16), 2006
PMID: 16963499
Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells.
Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV., Biotechnol. Bioeng. 105(6), 2010
PMID: 20014139

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20689950
PubMed | Europe PMC

Search this title in

Google Scholar