Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces

Kozachuk O, Yusenko K, Noei H, Wang Y, Walleck S, Glaser T, Fischer RA (2011)
Chemical Communications 47(30): 8509-8511.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract / Notes
Phase-pure crystalline thin films of a mixed-valence Ru(2)(II,III) metal-organic framework with 1,3,5-benzenetricarboxylate (btc) as a linker were solvothermally grown on amorphous alumina and silica surfaces. Based on the Rietveld refinement, the structure of Ru-MOF was assigned to be analogous to [Cu(3)(btc)(2)] (HKUST-1).
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kozachuk O, Yusenko K, Noei H, et al. Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications. 2011;47(30):8509-8511.
Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509-8511. doi:10.1039/c1cc11107h
Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., and Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications 47, 8509-8511.
Kozachuk, O., et al., 2011. Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), p 8509-8511.
O. Kozachuk, et al., “Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces”, Chemical Communications, vol. 47, 2011, pp. 8509-8511.
Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., Fischer, R.A.: Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications. 47, 8509-8511 (2011).
Kozachuk, Olesia, Yusenko, Kirill, Noei, Heshmat, Wang, Yuemin, Walleck, Stephan, Glaser, Thorsten, and Fischer, Roland A. “Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces”. Chemical Communications 47.30 (2011): 8509-8511.
This data publication is cited in the following publications:
This publication cites the following data publications:

12 Citations in Europe PMC

Data provided by Europe PubMed Central.

Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects.
Wang CH, Das A, Gao WY, Powers DC., Angew Chem Int Ed Engl 57(14), 2018
PMID: 29425399
Hetero-bimetallic metal-organic polyhedra.
Teo JM, Coghlan CJ, Evans JD, Tsivion E, Head-Gordon M, Sumby CJ, Doonan CJ., Chem Commun (Camb) 52(2), 2016
PMID: 26515807
Ruthenium Metal-Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties.
Zhang W, Kauer M, Halbherr O, Epp K, Guo P, Gonzalez MI, Xiao DJ, Wiktor C, LIabrés I Xamena FX, Wöll C, Wang Y, Muhler M, Fischer RA., Chemistry 22(40), 2016
PMID: 27529415
Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.
Gotthardt MA, Schoch R, Wolf S, Bauer M, Kleist W., Dalton Trans 44(5), 2015
PMID: 25518915
Understanding Small-Molecule Interactions in Metal-Organic Frameworks: Coupling Experiment with Theory.
Lee JS, Vlaisavljevich B, Britt DK, Brown CM, Haranczyk M, Neaton JB, Smit B, Long JR, Queen WL., Adv Mater 27(38), 2015
PMID: 26033176
Targeted manipulation of metal-organic frameworks to direct sorption properties.
Schneemann A, Henke S, Schwedler I, Fischer RA., Chemphyschem 15(5), 2014
PMID: 24615894
Metal-organic frameworks in chromatography.
Yusuf K, Aqel A, ALOthman Z., J Chromatogr A 1348(), 2014
PMID: 24845827
Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties.
Kozachuk O, Luz I, Llabrés i Xamena FX, Noei H, Kauer M, Albada HB, Bloch ED, Marler B, Wang Y, Muhler M, Fischer RA., Angew Chem Int Ed Engl 53(27), 2014
PMID: 24838592
Thermodynamic screening of metal-substituted MOFs for carbon capture.
Koh HS, Rana MK, Hwang J, Siegel DJ., Phys Chem Chem Phys 15(13), 2013
PMID: 23420035
The chemistry and applications of metal-organic frameworks.
Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM., Science 341(6149), 2013
PMID: 23990564

45 References

Data provided by Europe PubMed Central.


Zacher, J. Mater. Chem. 17(), 2007

Yusenko, CrystEngComm 12(), 2010

Zacher, Chem.–Eur. J. 17(), 2011
A chemically functionalizable nanoporous material
Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID., Science 283(5405), 1999
PMID: 10024237

Kramer, J. Mater. Chem. 16(), 2006
Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2.
Murray LJ, Dinca M, Yano J, Chavan S, Bordiga S, Brown CM, Long JR., J. Am. Chem. Soc. 132(23), 2010
PMID: 20481535

Aquino, Coord. Chem. Rev. 248(), 2004

Takamizawa, Mol. Cryst. Liq. Cryst. 342(), 2000

Ohmura, Chem. Lett. 32(5), 2003

Ribeiro, J. Mol. Struct. 890(), 2008

Motokawa, Angew. Chem., Int. Ed. 47(), 2008

Seo, J. Electrochem. Soc. 157(4), 2010

Pollini, Phys. Rev. B: Condens. Matter 50(), 1994

Belau, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 27(4), 2009

Norman, J. Am. Chem. Soc. 101(), 1979

Barral, Eur. J. Inorg. Chem. (), 2006

Takamizawa, Mol. Cryst. Liq. Cryst. 342(), 2000

Chen, Langmuir 5(), 1989

Kato, Catal. Commun. 7(), 2006

Kato, C. R. Chim. 10(), 2007

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21716991
PubMed | Europe PMC

Search this title in

Google Scholar