Marginality, differential marginality, and the Banzhaf value

Casajus A (2011)
Theory and Decision 71(3): 365-372.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We revisit the Nowak (Int J Game Theory 26:137-141, 1997) characterization of the Banzhaf value via 2-efficiency, the Dummy player axiom, symmetry, and marginality. In particular, we provide a brief proof that also works within the classes of superadditive games and of simple games. Within the intersection of these classes, one even can drop marginality. Further, we show that marginality and symmetry can be replaced by van den Brink fairness/differential marginality. For this axiomatization, 2-efficiency can be relaxed into superadditivity on the full domain of games.
Erscheinungsjahr
Zeitschriftentitel
Theory and Decision
Band
71
Zeitschriftennummer
3
Seite
365-372
ISSN
eISSN
PUB-ID

Zitieren

Casajus A. Marginality, differential marginality, and the Banzhaf value. Theory and Decision. 2011;71(3):365-372.
Casajus, A. (2011). Marginality, differential marginality, and the Banzhaf value. Theory and Decision, 71(3), 365-372. doi:10.1007/s11238-010-9224-5
Casajus, A. (2011). Marginality, differential marginality, and the Banzhaf value. Theory and Decision 71, 365-372.
Casajus, A., 2011. Marginality, differential marginality, and the Banzhaf value. Theory and Decision, 71(3), p 365-372.
A. Casajus, “Marginality, differential marginality, and the Banzhaf value”, Theory and Decision, vol. 71, 2011, pp. 365-372.
Casajus, A.: Marginality, differential marginality, and the Banzhaf value. Theory and Decision. 71, 365-372 (2011).
Casajus, André. “Marginality, differential marginality, and the Banzhaf value”. Theory and Decision 71.3 (2011): 365-372.