Epsin N-terminal homology domains bind on opposite sides of two SNAREs

Wang J, Gossing M, Fang P, Zimmermann J, Li X, Fischer von Mollard G, Niu L, Teng M (2011)
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108(30): 12277-12282.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
SNARE proteins are crucial for membrane fusion in vesicular transport. To ensure efficient and accurate fusion, SNAREs need to be sorted into different budding vesicles. This process is usually regulated by specific recognition between SNAREs and their adaptor proteins. How different pairs of SNAREs and adaptors achieve their recognition is unclear. Here, we report the recognition between yeast SNARE Vti1p and its adaptor Ent3p derived from three crystal structures. Surprisingly, this yeast pair Vti1p/Ent3p interacts through a distinct binding site compared to their homologues vti1b/epsinR in mammals. An opposite surface on Vti1p_Habc domain binds to a conserved area on the epsin N-terminal homology (ENTH) domain of Ent3p. Two-hybrid, in vitro pull-down and in vivo experiments indicate this binding interface is important for correct localization of Vti1p in the cell. This previously undescribed discovery that a cargo and adaptor pair uses different binding sites across species suggests the diversity of SNARE-adaptor recognition in vesicular transport.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Wang J, Gossing M, Fang P, et al. Epsin N-terminal homology domains bind on opposite sides of two SNAREs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2011;108(30):12277-12282.
Wang, J., Gossing, M., Fang, P., Zimmermann, J., Li, X., Fischer von Mollard, G., Niu, L., et al. (2011). Epsin N-terminal homology domains bind on opposite sides of two SNAREs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 108(30), 12277-12282.
Wang, J., Gossing, M., Fang, P., Zimmermann, J., Li, X., Fischer von Mollard, G., Niu, L., and Teng, M. (2011). Epsin N-terminal homology domains bind on opposite sides of two SNAREs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108, 12277-12282.
Wang, J., et al., 2011. Epsin N-terminal homology domains bind on opposite sides of two SNAREs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 108(30), p 12277-12282.
J. Wang, et al., “Epsin N-terminal homology domains bind on opposite sides of two SNAREs”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 108, 2011, pp. 12277-12282.
Wang, J., Gossing, M., Fang, P., Zimmermann, J., Li, X., Fischer von Mollard, G., Niu, L., Teng, M.: Epsin N-terminal homology domains bind on opposite sides of two SNAREs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 108, 12277-12282 (2011).
Wang, Jing, Gossing, Michael, Fang, Pengfei, Zimmermann, Jana, Li, Xu, Fischer von Mollard, Gabriele, Niu, Liwen, and Teng, Maikun. “Epsin N-terminal homology domains bind on opposite sides of two SNAREs”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108.30 (2011): 12277-12282.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Structural basis for type VI secretion effector recognition by a cognate immunity protein.
Li M, Le Trong I, Carl MA, Larson ET, Chou S, De Leon JA, Dove SL, Stenkamp RE, Mougous JD., PLoS Pathog. 8(4), 2012
PMID: 22511866
Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains.
Boucrot E, Pick A, Camdere G, Liska N, Evergren E, McMahon HT, Kozlov MM., Cell 149(1), 2012
PMID: 22464325
Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network.
Daboussi L, Costaguta G, Payne GS., Nat. Cell Biol. 14(3), 2012
PMID: 22344030

45 References

Data provided by Europe PubMed Central.

A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex.
Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Honing S, Evans PR, Owen DJ., Cell 141(7), 2010
PMID: 20603002
Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly.
Edeling MA, Mishra SK, Keyel PA, Steinhauser AL, Collins BM, Roth R, Heuser JE, Owen DJ, Traub LM., Dev. Cell 10(3), 2006
PMID: 16516836
A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex.
Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR, Honing S, Owen DJ., Nature 456(7224), 2008
PMID: 19140243
Solitary and repetitive binding motifs for the AP2 complex alpha-appendage in amphiphysin and other accessory proteins.
Olesen LE, Ford MG, Schmid EM, Vallis Y, Babu MM, Li PH, Mills IG, McMahon HT, Praefcke GJ., J. Biol. Chem. 283(8), 2008
PMID: 17986441
Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains.
Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH., Nature 415(6874), 2002
PMID: 11859375
Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport.
Shiba T, Kawasaki M, Takatsu H, Nogi T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Nakayama K, Wakatsuki S., Nat. Struct. Biol. 10(5), 2003
PMID: 12679809
The SNAREs vti1a and vti1b have distinct localization and SNARE complex partners.
Kreykenbohm V, Wenzel D, Antonin W, Atlachkine V, von Mollard GF., Eur. J. Cell Biol. 81(5), 2002
PMID: 12067063
Epsin: inducing membrane curvature.
Horvath CA, Vanden Broeck D, Boulet GA, Bogers J, De Wolf MJ., Int. J. Biochem. Cell Biol. 39(10), 2007
PMID: 17276129
Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8.
Atlashkin V, Kreykenbohm V, Eskelinen EL, Wenzel D, Fayyazi A, Fischer von Mollard G., Mol. Cell. Biol. 23(15), 2003
PMID: 12861006
Coiled-coil interactions are required for post-Golgi R-SNARE trafficking.
Gordon DE, Mirza M, Sahlender DA, Jakovleska J, Peden AA., EMBO Rep. 10(8), 2009
PMID: 19557002
Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.
Munson M, Chen X, Cocina AE, Schultz SM, Hughson FM., Nat. Struct. Biol. 7(10), 2000
PMID: 11017200
Concerted auto-regulation in yeast endosomal t-SNAREs.
Paumet F, Rahimian V, Di Liberto M, Rothman JE., J. Biol. Chem. 280(22), 2005
PMID: 15799968
Processing of X-ray diffraction data collected in oscillation mode
Otwinowski Z, Minor W., 1997
Molrep: An automated program for molecular replacement
Vagin A, Teplyakov A., 1997
Coot: model-building tools for molecular graphics.
Emsley P, Cowtan K., Acta Crystallogr. D Biol. Crystallogr. 60(Pt 12 Pt 1), 2004
PMID: 15572765
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL., Acta Crystallogr. D Biol. Crystallogr. 54(Pt 5), 1998
PMID: 9757107
Refinement of macromolecular structures by the maximum-likelihood method.
Murshudov GN, Vagin AA, Dodson EJ., Acta Crystallogr. D Biol. Crystallogr. 53(Pt 3), 1997
PMID: 15299926
Laa1p, a conserved AP-1 accessory protein important for AP-1 localization in yeast.
Fernandez GE, Payne GS., Mol. Biol. Cell 17(7), 2006
PMID: 16687571

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21746902
PubMed | Europe PMC

Search this title in

Google Scholar