Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser T, Rutledge JC (2010)
J. Immunol. 184(7): 3927-3936.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser T, Rutledge JC. Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 2010;184(7):3927-3936.
den Hartigh, L. J., Connolly-Rohrbach, J. E., Fore, S., Huser, T., & Rutledge, J. C. (2010). Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol., 184(7), 3927-3936. doi:10.4049/jimmunol.0903475
den Hartigh, L. J., Connolly-Rohrbach, J. E., Fore, S., Huser, T., and Rutledge, J. C. (2010). Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 184, 3927-3936.
den Hartigh, L.J., et al., 2010. Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol., 184(7), p 3927-3936.
L.J. den Hartigh, et al., “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”, J. Immunol., vol. 184, 2010, pp. 3927-3936.
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, T., Rutledge, J.C.: Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 184, 3927-3936 (2010).
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, Thomas, and Rutledge, J.C. “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”. J. Immunol. 184.7 (2010): 3927-3936.
This data publication is cited in the following publications:
This publication cites the following data publications:

35 Citations in Europe PMC

Data provided by Europe PubMed Central.

Apolipoprotein E2 accentuates postprandial inflammation and diet-induced obesity to promote hyperinsulinemia in mice.
Kuhel DG, Konaniah ES, Basford JE, McVey C, Goodin CT, Chatterjee TK, Weintraub NL, Hui DY., Diabetes 62(2), 2013
PMID: 22961083
ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium.
Gaudreault N, Kumar N, Posada JM, Stephens KB, Reyes de Mochel NS, Eberlé D, Olivas VR, Kim RY, Harms MJ, Johnson S, Messina LM, Rapp JH, Raffai RL., Arterioscler Thromb Vasc Biol 32(2), 2012
PMID: 22053073
Association of postalimentary lipemia with atherosclerotic manifestations.
Tentor J, Nakamura RT, Gidlund M, Barros-Mazon S, Harada LM, Zago VS, Oba JF, Faria EC., Braz J Med Biol Res 45(11), 2012
PMID: 22872287
Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes.
Guijas C, Pérez-Chacón G, Astudillo AM, Rubio JM, Gil-de-Gómez L, Balboa MA, Balsinde J., J Lipid Res 53(11), 2012
PMID: 22949356
CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1.
Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, Knowlton AA, Simon SI., Arterioscler Thromb Vasc Biol 31(1), 2011
PMID: 21030716
Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy.
Weeks T, Schie I, den Hartigh LJ, Rutledge JC, Huser T., J Biomed Opt 16(2), 2011
PMID: 21361680
Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I.
Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P., J Proteome Res 10(10), 2011
PMID: 21870882
Role of triglyceride-rich lipoproteins in diabetic nephropathy.
Rutledge JC, Ng KF, Aung HH, Wilson DW., Nat Rev Nephrol 6(6), 2010
PMID: 20440276

45 References

Data provided by Europe PubMed Central.

Label-free quantitative analysis of lipid metabolism in living caenorhabditis elegans
Le TT, Duren HM, Slipchenko MN, Hu CD, Cheng JX., 2009
Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase.
Fujimoto Y, Onoduka J, Homma KJ, Yamaguchi S, Mori M, Higashi Y, Makita M, Kinoshita T, Noda J, Itabe H, Takanoa T., Biol. Pharm. Bull. 29(11), 2006
PMID: 17077510
Triglyceride accumulation protects against fatty acid-induced lipotoxicity.
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE., Proc. Natl. Acad. Sci. U.S.A. 100(6), 2003
PMID: 12629214
Protein kinase B/Akt signalling is required for palmitate-induced beta-cell lipotoxicity.
Higa M, Shimabukuro M, Shimajiri Y, Takasu N, Shinjyo T, Inaba T., Diabetes Obes Metab 8(2), 2006
PMID: 16448528
Synovial fluid leukocytosis associated with intracellular lipid inclusions.
Weinstein J., Arch. Intern. Med. 140(4), 1980
PMID: 6244798
Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool.
Triggiani M, Oriente A, Seeds MC, Bass DA, Marone G, Chilton FH., J. Exp. Med. 182(5), 1995
PMID: 7595189
Leukocyte lipid body formation and eicosanoid generation: cyclooxygenase-independent inhibition by aspirin.
Bozza PT, Payne JL, Morham SG, Langenbach R, Smithies O, Weller PF., Proc. Natl. Acad. Sci. U.S.A. 93(20), 1996
PMID: 8855314
Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells.
Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP., Cancer Res. 68(6), 2008
PMID: 18339853
Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages.
Haversen L, Danielsson KN, Fogelstrand L, Wiklund O., Atherosclerosis 202(2), 2009
PMID: 18599066
1H NMR visible lipids in the life and death of cells.
Hakumaki JM, Kauppinen RA., Trends Biochem. Sci. 25(8), 2000
PMID: 10916153
Identification of caveolin-1 as a fatty acid binding protein.
Trigatti BL, Anderson RG, Gerber GE., Biochem. Biophys. Res. Commun. 255(1), 1999
PMID: 10082651
Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies.
Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG., Mol. Biol. Cell 16(4), 2005
PMID: 15689493
Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant.
Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG., Mol. Biol. Cell 15(1), 2004
PMID: 14528016
Postprandial lipoprotein metabolism and atherosclerosis.
Karpe F., J. Intern. Med. 246(4), 1999
PMID: 10583705
Metabolism of triglyceride-rich lipoproteins during alimentary lipemia.
Karpe F, Steiner G, Olivecrona T, Carlson LA, Hamsten A., J. Clin. Invest. 91(3), 1993
PMID: 8450056
Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia.
Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, Burns AR, Paul A, Smith CW, Simon SI, Ballantyne CM., Circulation 119(20), 2009
PMID: 19433759

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20208007
PubMed | Europe PMC

Search this title in

Google Scholar