Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser T, Rutledge JC (2010)
J. Immunol. 184(7): 3927-3936.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser T, Rutledge JC. Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 2010;184(7):3927-3936.
den Hartigh, L. J., Connolly-Rohrbach, J. E., Fore, S., Huser, T., & Rutledge, J. C. (2010). Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol., 184(7), 3927-3936.
den Hartigh, L. J., Connolly-Rohrbach, J. E., Fore, S., Huser, T., and Rutledge, J. C. (2010). Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 184, 3927-3936.
den Hartigh, L.J., et al., 2010. Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol., 184(7), p 3927-3936.
L.J. den Hartigh, et al., “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”, J. Immunol., vol. 184, 2010, pp. 3927-3936.
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, T., Rutledge, J.C.: Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 184, 3927-3936 (2010).
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, Thomas, and Rutledge, J.C. “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”. J. Immunol. 184.7 (2010): 3927-3936.
This data publication is cited in the following publications:
This publication cites the following data publications:

22 Citations in Europe PMC

Data provided by Europe PubMed Central.

Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia.
Xu L, Dai Perrard X, Perrard JL, Yang D, Xiao X, Teng BB, Simon SI, Ballantyne CM, Wu H., Arterioscler. Thromb. Vasc. Biol. 35(8), 2015
PMID: 26112011
Postprandial VLDL lipolysis products increase monocyte adhesion and lipid droplet formation via activation of ERK2 and NFκB.
den Hartigh LJ, Altman R, Norman JE, Rutledge JC., Am. J. Physiol. Heart Circ. Physiol. 306(1), 2014
PMID: 24163071
The effects of dietary fatty acids on the postprandial triglyceride-rich lipoprotein/apoB48 receptor axis in human monocyte/macrophage cells.
Varela LM, Ortega-Gomez A, Lopez S, Abia R, Muriana FJ, Bermudez B., J. Nutr. Biochem. 24(12), 2013
PMID: 24231096
Biodiesel versus diesel exposure: enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung.
Yanamala N, Hatfield MK, Farcas MT, Schwegler-Berry D, Hummer JA, Shurin MR, Birch ME, Gutkin DW, Kisin E, Kagan VE, Bugarski AD, Shvedova AA., Toxicol. Appl. Pharmacol. 272(2), 2013
PMID: 23886933
Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation.
Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC., Arterioscler. Thromb. Vasc. Biol. 33(9), 2013
PMID: 23868936
Postprandial lipoproteins and the molecular regulation of vascular homeostasis.
Botham KM, Wheeler-Jones CP., Prog. Lipid Res. 52(4), 2013
PMID: 23774609
Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways.
Rowan-Carroll A, Halappanavar S, Williams A, Somers CM, Yauk CL., Environ. Mol. Mutagen. 54(4), 2013
PMID: 23536514
Apolipoprotein E2 accentuates postprandial inflammation and diet-induced obesity to promote hyperinsulinemia in mice.
Kuhel DG, Konaniah ES, Basford JE, McVey C, Goodin CT, Chatterjee TK, Weintraub NL, Hui DY., Diabetes 62(2), 2013
PMID: 22961083
Postprandial apoE isoform and conformational changes associated with VLDL lipolysis products modulate monocyte inflammation.
den Hartigh LJ, Altman R, Hutchinson R, Petrlova J, Budamagunta MS, Tetali SD, Lagerstedt JO, Voss JC, Rutledge JC., PLoS ONE 7(11), 2012
PMID: 23209766
Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes.
Guijas C, Perez-Chacon G, Astudillo AM, Rubio JM, Gil-de-Gomez L, Balboa MA, Balsinde J., J. Lipid Res. 53(11), 2012
PMID: 22949356
Association of postalimentary lipemia with atherosclerotic manifestations.
Tentor J, Nakamura RT, Gidlund M, Barros-Mazon S, Harada LM, Zago VS, Oba JF, Faria EC., Braz. J. Med. Biol. Res. 45(11), 2012
PMID: 22872287
ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium.
Gaudreault N, Kumar N, Posada JM, Stephens KB, Reyes de Mochel NS, Eberle D, Olivas VR, Kim RY, Harms MJ, Johnson S, Messina LM, Rapp JH, Raffai RL., Arterioscler. Thromb. Vasc. Biol. 32(2), 2012
PMID: 22053073
Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I.
Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P., J. Proteome Res. 10(10), 2011
PMID: 21870882
Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy.
Weeks T, Schie I, den Hartigh LJ, Rutledge JC, Huser T., J Biomed Opt 16(2), 2011
PMID: 21361680
CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1.
Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, Knowlton AA, Simon SI., Arterioscler. Thromb. Vasc. Biol. 31(1), 2011
PMID: 21030716
Role of triglyceride-rich lipoproteins in diabetic nephropathy.
Rutledge JC, Ng KF, Aung HH, Wilson DW., Nat Rev Nephrol 6(6), 2010
PMID: 20440276

45 References

Data provided by Europe PubMed Central.

Label-free quantitative analysis of lipid metabolism in living caenorhabditis elegans
Le TT, Duren HM, Slipchenko MN, Hu CD, Cheng JX., 2009
Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase.
Fujimoto Y, Onoduka J, Homma KJ, Yamaguchi S, Mori M, Higashi Y, Makita M, Kinoshita T, Noda J, Itabe H, Takanoa T., Biol. Pharm. Bull. 29(11), 2006
PMID: 17077510
Triglyceride accumulation protects against fatty acid-induced lipotoxicity.
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE., Proc. Natl. Acad. Sci. U.S.A. 100(6), 2003
PMID: 12629214
Protein kinase B/Akt signalling is required for palmitate-induced beta-cell lipotoxicity.
Higa M, Shimabukuro M, Shimajiri Y, Takasu N, Shinjyo T, Inaba T., Diabetes Obes Metab 8(2), 2006
PMID: 16448528
Synovial fluid leukocytosis associated with intracellular lipid inclusions.
Weinstein J., Arch. Intern. Med. 140(4), 1980
PMID: 6244798
Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool.
Triggiani M, Oriente A, Seeds MC, Bass DA, Marone G, Chilton FH., J. Exp. Med. 182(5), 1995
PMID: 7595189
Leukocyte lipid body formation and eicosanoid generation: cyclooxygenase-independent inhibition by aspirin.
Bozza PT, Payne JL, Morham SG, Langenbach R, Smithies O, Weller PF., Proc. Natl. Acad. Sci. U.S.A. 93(20), 1996
PMID: 8855314
Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells.
Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP., Cancer Res. 68(6), 2008
PMID: 18339853
Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages.
Haversen L, Danielsson KN, Fogelstrand L, Wiklund O., Atherosclerosis 202(2), 2009
PMID: 18599066
1H NMR visible lipids in the life and death of cells.
Hakumaki JM, Kauppinen RA., Trends Biochem. Sci. 25(8), 2000
PMID: 10916153
Identification of caveolin-1 as a fatty acid binding protein.
Trigatti BL, Anderson RG, Gerber GE., Biochem. Biophys. Res. Commun. 255(1), 1999
PMID: 10082651
Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies.
Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG., Mol. Biol. Cell 16(4), 2005
PMID: 15689493
Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant.
Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG., Mol. Biol. Cell 15(1), 2004
PMID: 14528016
Postprandial lipoprotein metabolism and atherosclerosis.
Karpe F., J. Intern. Med. 246(4), 1999
PMID: 10583705
Metabolism of triglyceride-rich lipoproteins during alimentary lipemia.
Karpe F, Steiner G, Olivecrona T, Carlson LA, Hamsten A., J. Clin. Invest. 91(3), 1993
PMID: 8450056
Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia.
Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, Burns AR, Paul A, Smith CW, Simon SI, Ballantyne CM., Circulation 119(20), 2009
PMID: 19433759

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20208007
PubMed | Europe PMC

Search this title in

Google Scholar