Optical trapping and propulsion of red blood cells on waveguide surfaces

Ahluwalia BS, McCourt P, Huser T, Helleso OG (2010)
Opt. Express 20(18): 21053-21061.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 6 mu m/s on a waveguide with a width of similar to 6 mu m is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported. (C)2010 Optical Society of America
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Ahluwalia BS, McCourt P, Huser T, Helleso OG. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express. 2010;20(18):21053-21061.
Ahluwalia, B. S., McCourt, P., Huser, T., & Helleso, O. G. (2010). Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express, 20(18), 21053-21061. doi:10.1364/OE.18.021053
Ahluwalia, B. S., McCourt, P., Huser, T., and Helleso, O. G. (2010). Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express 20, 21053-21061.
Ahluwalia, B.S., et al., 2010. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express, 20(18), p 21053-21061.
B.S. Ahluwalia, et al., “Optical trapping and propulsion of red blood cells on waveguide surfaces”, Opt. Express, vol. 20, 2010, pp. 21053-21061.
Ahluwalia, B.S., McCourt, P., Huser, T., Helleso, O.G.: Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express. 20, 21053-21061 (2010).
Ahluwalia, B.S., McCourt, P., Huser, Thomas, and Helleso, O.G. “Optical trapping and propulsion of red blood cells on waveguide surfaces”. Opt. Express 20.18 (2010): 21053-21061.
This data publication is cited in the following publications:
This publication cites the following data publications:

15 Citations in Europe PMC

Data provided by Europe PubMed Central.

Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
Conteduca D, Dell'Olio F, Krauss TF, Ciminelli C., Appl Spectrosc 71(3), 2017
PMID: 28287314
Recent advances in optical fiber devices for microfluidics integration.
Blue R, Uttamchandani D., J Biophotonics 9(1-2), 2016
PMID: 27115035
Metal-insulator-metal waveguides for particle trapping and separation.
Khan SA, Chang CM, Zaidi Z, Shin W, Shi Y, Ellerbee Bowden AK, Solgaard O., Lab Chip 16(12), 2016
PMID: 27216706
Review of methods to probe single cell metabolism and bioenergetics.
Vasdekis AE, Stephanopoulos G., Metab Eng 27(), 2015
PMID: 25448400
Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.
Ahluwalia BS, McCourt P, Oteiza A, Wilkinson JS, Huser TR, Hellesø OG., Analyst 140(1), 2015
PMID: 25408950
Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber.
Unterkofler S, Garbos MK, Euser TG, St J Russell P., J Biophotonics 6(9), 2013
PMID: 23281270
Serial Raman spectroscopy of particles trapped on a waveguide.
Løvhaugen P, Ahluwalia BS, Huser TR, Hellesø OG., Opt Express 21(3), 2013
PMID: 23481754
Surface transport and stable trapping of particles and cells by an optical waveguide loop.
Hellesø OG, Løvhaugen P, Subramanian AZ, Wilkinson JS, Ahluwalia BS., Lab Chip 12(18), 2012
PMID: 22814473
All-optically-controlled nanoparticle transporting and manipulating at SOI waveguide intersections.
Li H, Yu X, Wu X, Shi W, Chen M, Liu L, Xu L., Opt Express 20(22), 2012
PMID: 23187179
Waveguide trapping of hollow glass spheres.
Ahluwalia BS, Løvhaugen P, Hellesø OG., Opt Lett 36(17), 2011
PMID: 21886206

33 References

Data provided by Europe PubMed Central.

Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells
Jess, Journal of Raman Spectroscopy 38(9), 2007
Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
Schmidt BS, Yang AH, Erickson D, Lipson M., Opt Express 15(22), 2007
PMID: 19550709
Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers.
Rao S, Balint S, Cossins B, Guallar V, Petrov D., Biophys. J. 96(1), 2009
PMID: 18931252
Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.
Yang AH, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D., Nature 457(7225), 2009
PMID: 19122638
A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers.
Henon S, Lenormand G, Richert A, Gallet F., Biophys. J. 76(2), 1999
PMID: 9916046
Optical transport of semiconductor nanowires on silicon nitride waveguides
Néel, Applied Physics Letters 94(25), 2009

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20941001
PubMed | Europe PMC

Search this title in

Google Scholar