Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum

Dierks T, Schmidt B, VonFigura K (1997)
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 94(22): 11963-11968.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
In sulfatases a C-alpha-formylglycine residue is found at a position where their cDNA sequences predict a cysteine residue. In multiple sulfatase deficiency, an inherited lysosomal storage disorder, catalytically inactive sulfatases are synthesized which retain the cysteine residue, indicating that the C,-formylglycine residue is required for sulfatase activity. Using in vitro translation in the absence or presence of transport competent microsomes we found that newly synthesized sulfatase polypeptides carry a cysteine residue and that the oxidation of its thiol group to an aldehyde is catalyzed in the endoplasmic reticulum. A linear sequence of 16 residues surrounding the Cys-69 in arylsulfatase A is sufficient to direct the oxidation, This novel protein modification occurs after or at a late stage of cotranslational protein translocation into the endoplasmic reticulum when the polypeptide is not yet folded to its native structure.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Dierks T, Schmidt B, VonFigura K. Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 1997;94(22):11963-11968.
Dierks, T., Schmidt, B., & VonFigura, K. (1997). Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 94(22), 11963-11968.
Dierks, T., Schmidt, B., and VonFigura, K. (1997). Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 94, 11963-11968.
Dierks, T., Schmidt, B., & VonFigura, K., 1997. Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 94(22), p 11963-11968.
T. Dierks, B. Schmidt, and K. VonFigura, “Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 94, 1997, pp. 11963-11968.
Dierks, T., Schmidt, B., VonFigura, K.: Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 94, 11963-11968 (1997).
Dierks, Thomas, Schmidt, B, and VonFigura, K. “Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 94.22 (1997): 11963-11968.
This data publication is cited in the following publications:
This publication cites the following data publications:

43 Citations in Europe PMC

Data provided by Europe PubMed Central.

Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, Dierks T, von Figura K, Schmidt B., FEBS J. 282(17), 2015
PMID: 26077311
Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Banas S, de Hart GW, Baker J, Rabuka D., J. Biol. Chem. 290(25), 2015
PMID: 25931126
A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome.
Chung YK, Sohn YB, Sohn JM, Lee J, Chang MS, Kwun Y, Kim CH, Lee JY, Yook YJ, Ko AR, Jin DK., Glycoconj. J. 31(4), 2014
PMID: 24781369
Arylsulfatase K, a novel lysosomal sulfatase.
Wiegmann EM, Westendorf E, Kalus I, Pringle TH, Lubke T, Dierks T., J. Biol. Chem. 288(42), 2013
PMID: 23986440
Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study.
Schenk M, Koppisetty CA, Santos DC, Carmona E, Bhatia S, Nyholm PG, Tanphaichitr N., Glycoconj. J. 26(8), 2009
PMID: 19381802
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J. 275(6), 2008
PMID: 18266766
Inactivation of recombinant human steroid sulfatase by KW-2581.
Ishida H, Sato N, Hosogi J, Tanaka H, Kuwabara T., J. Steroid Biochem. Mol. Biol. 108(1-2), 2008
PMID: 17945483
Development of an activity-based probe for steroid sulfatases.
Lu CP, Ren CT, Wu SH, Chu CY, Lo LC., Chembiochem 8(18), 2007
PMID: 17943706
Driving forces of protein association: the dimer-octamer equilibrium in arylsulfatase A.
Vagedes P, Saenger W, Knapp EW., Biophys. J. 83(6), 2002
PMID: 12496078
Pathologic findings of multiple sulfatase deficiency reflect the pattern of enzyme deficiencies.
Macaulay RJ, Lowry NJ, Casey RE., Pediatr. Neurol. 19(5), 1998
PMID: 9880143

21 References

Data provided by Europe PubMed Central.

A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016

Kolodny E, Fluharty A., 1995

Bond C, Clements P, Ashby S, Collyer C, Harrop S, Hopwood J, Guss J., 1997
Cloning and expression of human arylsulfatase A.
Stein C, Gieselmann V, Kreysing J, Schmidt B, Pohlmann R, Waheed A, Meyer HE, O'Brien JS, von Figura K., J. Biol. Chem. 264(2), 1989
PMID: 2562955
Glycosylation and phosphorylation of arylsulfatase A.
Sommerlade HJ, Selmer T, Ingendoh A, Gieselmann V, von Figura K, Neifer K, Schmidt B., J. Biol. Chem. 269(33), 1994
PMID: 7914890
Structural requirements for transport of preprocecropinA and related presecretory proteins into mammalian microsomes.
Schlenstedt G, Gudmundsson GH, Boman HG, Zimmermann R., J. Biol. Chem. 267(34), 1992
PMID: 1447183
A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.
Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R., EMBO J. 15(24), 1996
PMID: 9003769
Selenocysteine.
Stadtman TC., Annu. Rev. Biochem. 65(), 1996
PMID: 8811175
Luciferase assembly after transport into mammalian microsomes involves molecular chaperones and peptidyl-prolyl cis/trans-isomerases.
Brunke M, Dierks T, Schlotterhose P, Escher A, Schmidt B, Szalay AA, Lechte M, Sandholzer U, Zimmermann R., J. Biol. Chem. 271(38), 1996
PMID: 8798557
Transcription of full-length and truncated mRNA transcripts to study protein translocation across the endoplasmic reticulum.
Gilmore R, Collins P, Johnson J, Kellaris K, Rapiejko P., Methods Cell Biol. 34(), 1991
PMID: 1943802
Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes.
Rapoport TA, Jungnickel B, Kutay U., Annu. Rev. Biochem. 65(), 1996
PMID: 8811181
Snapshots of membrane-translocating proteins.
Martoglio B, Dobberstein B., Trends Cell Biol. 6(4), 1996
PMID: 15157477
A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy.
Franco B, Meroni G, Parenti G, Levilliers J, Bernard L, Gebbia M, Cox L, Maroteaux P, Sheffield L, Rappold GA, Andria G, Petit C, Ballabio A., Cell 81(1), 1995
PMID: 7720070

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 9342345
PubMed | Europe PMC

Search this title in

Google Scholar