Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Figura von K (1998)
JOURNAL OF BIOLOGICAL CHEMISTRY 273(40): 25560-25564.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Eukaryotic sulfatases carry an alpha-formylglycine residue that is essential for activity and is located within the catalytic site. This formylglycine is generated by posttranslational modification of a conserved cysteine residue. The arylsulfatase gene of Pseudomonas aeruginosa also encodes a cysteine at the critical position. This protein could be expressed in active form in a sulfatase-deficient strain of P. aeruginosa, thereby restoring growth on aromatic sulfates as sole sulfur source, and in Escherichia coli, Analysis of the mature protein expressed in E. coli revealed the presence of formylglycine at the expected position, showing that the cysteine is also converted to formylglycine in a prokaryotic sulfatase. Substituting the relevant cysteine by a serine codon in the P. aeruginosa gene led to expression of inactive sulfatase protein, lacking the formylglycine. The machinery catalyzing the modification of the Pseudomonas sulfatase in E. coli therefore resembles the eukaryotic machinery, accepting cysteine but not serine as a modification substrate, By contrast, in the arylsulfatase of Klebsiella pneumoniae a formylglycine is found generated by modification of a serine residue. The expression of both the Klebsiella and the Pseudomonas sulfatases as active enzymes in E. coli suggests that two modification systems are present, or that a common modification system is modulated by a cofactor.
Publishing Year
ISSN
PUB-ID

Cite this

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Figura von K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY. 1998;273(40):25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., & Figura von, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY, 273(40), 25560-25564. doi:10.1074/jbc.273.40.25560
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., and Figura von, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY 273, 25560-25564.
Dierks, T., et al., 1998. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY, 273(40), p 25560-25564.
T. Dierks, et al., “Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, 1998, pp. 25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A., Figura von, K.: Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY. 273, 25560-25564 (1998).
Dierks, Thomas, Miech, C, Hummerjohann, J, Schmidt, B, Kertesz, MA, and Figura von, K. “Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine”. JOURNAL OF BIOLOGICAL CHEMISTRY 273.40 (1998): 25560-25564.
This data publication is cited in the following publications:
This publication cites the following data publications:

45 Citations in Europe PMC

Data provided by Europe PubMed Central.

Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J 275(6), 2008
PMID: 18266766
Introducing genetically encoded aldehydes into proteins.
Carrico IS, Carlson BL, Bertozzi CR., Nat Chem Biol 3(6), 2007
PMID: 17450134
Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora.
Kim DE, Kim KH, Bae YJ, Lee JH, Jang YH, Nam SW., Protein Expr Purif 39(1), 2005
PMID: 15596366
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration.
Wallner SR, Bauer M, Würdemann C, Wecker P, Glöckner FO, Faber K., Angew Chem Int Ed Engl 44(39), 2005
PMID: 16161167
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Bacterial transporters for sulfate and organosulfur compounds.
Kertesz MA., Res Microbiol 152(3-4), 2001
PMID: 11421275
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Boltes I, Czapinska H, Kahnert A, von Bülow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Usón I., Structure 9(6), 2001
PMID: 11435113
The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon.
Hummerjohann J, Laudenbach S, Rétey J, Leisinger T, Kertesz MA., J Bacteriol 182(7), 2000
PMID: 10715018
The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA., J Bacteriol 182(10), 2000
PMID: 10781557
Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo.
Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS., Infect Immun 68(9), 2000
PMID: 10948126
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J 18(8), 1999
PMID: 10205163

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 9748219
PubMed | Europe PMC

Search this title in

Google Scholar