Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Figura von K (1998)
JOURNAL OF BIOLOGICAL CHEMISTRY 273(40): 25560-25564.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Eukaryotic sulfatases carry an alpha-formylglycine residue that is essential for activity and is located within the catalytic site. This formylglycine is generated by posttranslational modification of a conserved cysteine residue. The arylsulfatase gene of Pseudomonas aeruginosa also encodes a cysteine at the critical position. This protein could be expressed in active form in a sulfatase-deficient strain of P. aeruginosa, thereby restoring growth on aromatic sulfates as sole sulfur source, and in Escherichia coli, Analysis of the mature protein expressed in E. coli revealed the presence of formylglycine at the expected position, showing that the cysteine is also converted to formylglycine in a prokaryotic sulfatase. Substituting the relevant cysteine by a serine codon in the P. aeruginosa gene led to expression of inactive sulfatase protein, lacking the formylglycine. The machinery catalyzing the modification of the Pseudomonas sulfatase in E. coli therefore resembles the eukaryotic machinery, accepting cysteine but not serine as a modification substrate, By contrast, in the arylsulfatase of Klebsiella pneumoniae a formylglycine is found generated by modification of a serine residue. The expression of both the Klebsiella and the Pseudomonas sulfatases as active enzymes in E. coli suggests that two modification systems are present, or that a common modification system is modulated by a cofactor.
Publishing Year
ISSN
PUB-ID

Cite this

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Figura von K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY. 1998;273(40):25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., & Figura von, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY, 273(40), 25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., and Figura von, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY 273, 25560-25564.
Dierks, T., et al., 1998. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY, 273(40), p 25560-25564.
T. Dierks, et al., “Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, 1998, pp. 25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A., Figura von, K.: Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY. 273, 25560-25564 (1998).
Dierks, Thomas, Miech, C, Hummerjohann, J, Schmidt, B, Kertesz, MA, and Figura von, K. “Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine”. JOURNAL OF BIOLOGICAL CHEMISTRY 273.40 (1998): 25560-25564.
This data publication is cited in the following publications:
This publication cites the following data publications:

35 Citations in Europe PMC

Data provided by Europe PubMed Central.

The Regulation of Steroid Action by Sulfation and Desulfation.
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA., Endocr. Rev. 36(5), 2015
PMID: 26213785
In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3).
Youssef NH, Farag IF, Rinke C, Hallam SJ, Woyke T, Elshahed MS., PLoS ONE 10(6), 2015
PMID: 26039074
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.
Currie DH, Guss AM, Herring CD, Giannone RJ, Johnson CM, Lankford PK, Brown SD, Hettich RL, Lynd LR., Appl. Environ. Microbiol. 80(16), 2014
PMID: 24907337
Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12.
Morales-Alvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landazuri P, Poutou-Pinales RA, Saenz-Suarez H, Barrera LA, Echeverri-Pena OY., J. Microbiol. 51(2), 2013
PMID: 23625223
Recent N-atom containing compounds from indo-pacific invertebrates.
Kashman Y, Bishara A, Aknin M., Mar Drugs 8(11), 2010
PMID: 21139846
Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study.
Schenk M, Koppisetty CA, Santos DC, Carmona E, Bhatia S, Nyholm PG, Tanphaichitr N., Glycoconj. J. 26(8), 2009
PMID: 19381802
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J. 275(6), 2008
PMID: 18266766

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 9748219
PubMed | Europe PMC

Search this title in

Google Scholar