Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases

Dierks T, Lecca MR, Schlotterhose P, Schmidt B, Figura von K (1999)
EMBO JOURNAL 18(8): 2084-2091.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Sulfatases carry at their catalytic site a unique posttranslational modification, an alpha-formylglycine residue that is essential for enzyme activity. Formylglycine is generated by oxidation of a conserved cysteine or, in some prokaryotic sulfatases, serine residue. In eukaryotes, this oxidation occurs in the endoplasmic reticulum during or shortly after import of the nascent sulfatase polypeptide, The modification of arylsulfatase A was studied in vitro and was found to be directed by a short linear sequence, CTPSR, starting with the cysteine to be modified. Mutational analyses showed that the cysteine, proline and arginine are the key residues within this motif, whereas formylglycine formation tolerated the individual, but not the simultaneous substitution of the threonine or serine. The CTPSR moth was transferred to a heterologous protein leading to low-efficient formylglycine formation. The efficiency reached control values when seven additional residues (AALLTGR) directly following the CTPSR moth in arylsulfatase A were present. Mutating up to four residues simultaneously within this heptamer sequence inhibited the modification only moderately. AALLTGR may, therefore, have an auxiliary function in presenting the core motif to the modifying enzyme. Within the two moths, the key residues are fully, and other residues are highly conserved among all known members of the sulfatase family.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Dierks T, Lecca MR, Schlotterhose P, Schmidt B, Figura von K. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO JOURNAL. 1999;18(8):2084-2091.
Dierks, T., Lecca, M. R., Schlotterhose, P., Schmidt, B., & Figura von, K. (1999). Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO JOURNAL, 18(8), 2084-2091.
Dierks, T., Lecca, M. R., Schlotterhose, P., Schmidt, B., and Figura von, K. (1999). Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO JOURNAL 18, 2084-2091.
Dierks, T., et al., 1999. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO JOURNAL, 18(8), p 2084-2091.
T. Dierks, et al., “Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases”, EMBO JOURNAL, vol. 18, 1999, pp. 2084-2091.
Dierks, T., Lecca, M.R., Schlotterhose, P., Schmidt, B., Figura von, K.: Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO JOURNAL. 18, 2084-2091 (1999).
Dierks, Thomas, Lecca, MR, Schlotterhose, P, Schmidt, B, and Figura von, K. “Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases”. EMBO JOURNAL 18.8 (1999): 2084-2091.
This data publication is cited in the following publications:
This publication cites the following data publications:

46 Citations in Europe PMC

Data provided by Europe PubMed Central.

Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, Dierks T, von Figura K, Schmidt B., FEBS J. 282(17), 2015
PMID: 26077311
Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Banas S, de Hart GW, Baker J, Rabuka D., J. Biol. Chem. 290(25), 2015
PMID: 25931126
Deep Genotyping of the IDS Gene in Colombian Patients with Hunter Syndrome.
Galvis J, Gonzalez J, Uribe A, Velasco H., JIMD Rep 19(), 2015
PMID: 25681085
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.
Currie DH, Guss AM, Herring CD, Giannone RJ, Johnson CM, Lankford PK, Brown SD, Hettich RL, Lynd LR., Appl. Environ. Microbiol. 80(16), 2014
PMID: 24907337
Chemoenzymatic Fc glycosylation via engineered aldehyde tags.
Smith EL, Giddens JP, Iavarone AT, Godula K, Wang LX, Bertozzi CR., Bioconjug. Chem. 25(4), 2014
PMID: 24702330
The heparan sulfate editing enzyme Sulf1 plays a novel role in zebrafish VegfA mediated arterial venous identity.
Gorsi B, Liu F, Ma X, Chico TJ, v A, Kramer KL, Bridges E, Monteiro R, Harris AL, Patient R, Stringer SE., Angiogenesis 17(1), 2014
PMID: 23959107
Arylsulfatase K, a novel lysosomal sulfatase.
Wiegmann EM, Westendorf E, Kalus I, Pringle TH, Lubke T, Dierks T., J. Biol. Chem. 288(42), 2013
PMID: 23986440
Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12.
Morales-Alvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landazuri P, Poutou-Pinales RA, Saenz-Suarez H, Barrera LA, Echeverri-Pena OY., J. Microbiol. 51(2), 2013
PMID: 23625223
An Italian cohort study identifies four new pathologic mutations in the ARSA gene.
Galla D, de Gemmis P, Anesi L, Berto S, Dolcetta D, Hladnik U., J. Mol. Neurosci. 50(2), 2013
PMID: 23559313
Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.
Grove TL, Ahlum JH, Qin RM, Lanz ND, Radle MI, Krebs C, Booker SJ., Biochemistry 52(17), 2013
PMID: 23477283
Site-specific modification of adeno-associated viruses via a genetically engineered aldehyde tag.
Liu Y, Fang Y, Zhou Y, Zandi E, Lee CL, Joo KI, Wang P., Small 9(3), 2013
PMID: 23038676
HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development.
Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev. Genes Evol. 221(3), 2011
PMID: 21706447
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J. 275(6), 2008
PMID: 18266766
Development of an activity-based probe for steroid sulfatases.
Lu CP, Ren CT, Wu SH, Chu CY, Lo LC., Chembiochem 8(18), 2007
PMID: 17943706
Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration.
Wallner SR, Bauer M, Wurdemann C, Wecker P, Glockner FO, Faber K., Angew. Chem. Int. Ed. Engl. 44(39), 2005
PMID: 16161167
Molecular basis of mucopolysaccharidosis type II in Portugal: identification of four novel mutations.
Moreira da Silva I, Froissart R, Marques dos Santos H, Caseiro C, Maire I, Bozon D., Clin. Genet. 60(4), 2001
PMID: 11683780

24 References

Data provided by Europe PubMed Central.

Structure of a human lysosomal sulfatase.
Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM., Structure 5(2), 1997
PMID: 9032078
A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.
Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R., EMBO J. 15(24), 1996
PMID: 9003769
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K., J. Biol. Chem. 273(40), 1998
PMID: 9748219
Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982.
Dotson SB, Smith CE, Ling CS, Barry GF, Kishore GM., J. Biol. Chem. 271(42), 1996
PMID: 8824203
A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy.
Franco B, Meroni G, Parenti G, Levilliers J, Bernard L, Gebbia M, Cox L, Maroteaux P, Sheffield L, Rappold GA, Andria G, Petit C, Ballabio A., Cell 81(1), 1995
PMID: 7720070
Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A.
Knaust A, Schmidt B, Dierks T, von Bulow R, von Figura K., Biochemistry 37(40), 1998
PMID: 9760228
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W., Biochemistry 37(11), 1998
PMID: 9521684
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923
Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter.
Neefjes JJ, Momburg F, Hammerling GJ., Science 261(5122), 1993
PMID: 8342042
Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Nielsen H, Engelbrecht J, Brunak S, von Heijne G., Protein Eng. 10(1), 1997
PMID: 9051728
The sulfatase gene family.
Parenti G, Meroni G, Ballabio A., Curr. Opin. Genet. Dev. 7(3), 1997
PMID: 9229115
Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
Recksiek M, Selmer T, Dierks T, Schmidt B, von Figura K., J. Biol. Chem. 273(11), 1998
PMID: 9497327
Computational analysis of bacterial sulfatases and their modifying enzymes.
Schirmer A, Kolter R., Chem. Biol. 5(8), 1998
PMID: 9710560
A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective.
Shepherd JC, Schumacher TN, Ashton-Rickardt PG, Imaeda S, Ploegh HL, Janeway CA Jr, Tonegawa S., Cell 74(3), 1993
PMID: 8348620
Glycosylation and phosphorylation of arylsulfatase A.
Sommerlade HJ, Selmer T, Ingendoh A, Gieselmann V, von Figura K, Neifer K, Schmidt B., J. Biol. Chem. 269(33), 1994
PMID: 7914890
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
Diversity of T cell receptor delta-chain cDNA in the thymus of a one-month-old pig.
Yang YG, Ohta S, Yamada S, Shimizu M, Takagaki Y., J. Immunol. 155(4), 1995
PMID: 7636249

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10205163
PubMed | Europe PMC

Search this title in

Google Scholar