Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Peng JH, Schmidt B, Figura von K, Dierks T (2003)
JOURNAL OF MASS SPECTROMETRY 38(1): 80-86.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
C-alpha-Formylglycine, the catalytic amino acid residue in the active site of sulfatases, is generated by post-translational modification of a cysteine or serine residue. We describe a highly sensitive procedure for the detection of C-alpha-formylglycine-containing peptides in tryptic digests of sulfatase proteins, The protocol is based on the formation of hydrazone derivatives of C-alpha-formylglycine-containing peptides when using dinitrophenylhydrazine as a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The hydrazone derivatives desorb and ionize with high efficiency and can be detected in the sub-femtomole range. The presence of C-alpha-formylglycine is indicated by a mass increment of 180.13 u, corresponding to the hydrazone moiety, and also by a unique C-terminal fragment ion, characteristic of sulfatases, that becomes prominent in MALDI post-source decay mass spectra of the hydrazone derivatives. Copyright (C) 2003 John Wiley Sons, Ltd.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Peng JH, Schmidt B, Figura von K, Dierks T. Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY. 2003;38(1):80-86.
Peng, J. H., Schmidt, B., Figura von, K., & Dierks, T. (2003). Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY, 38(1), 80-86.
Peng, J. H., Schmidt, B., Figura von, K., and Dierks, T. (2003). Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY 38, 80-86.
Peng, J.H., et al., 2003. Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY, 38(1), p 80-86.
J.H. Peng, et al., “Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry”, JOURNAL OF MASS SPECTROMETRY, vol. 38, 2003, pp. 80-86.
Peng, J.H., Schmidt, B., Figura von, K., Dierks, T.: Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY. 38, 80-86 (2003).
Peng, JH, Schmidt, B, Figura von, K, and Dierks, Thomas. “Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry”. JOURNAL OF MASS SPECTROMETRY 38.1 (2003): 80-86.
This data publication is cited in the following publications:
This publication cites the following data publications:

12 Citations in Europe PMC

Data provided by Europe PubMed Central.

Analysis of protein carbonylation--pitfalls and promise in commonly used methods.
Rogowska-Wrzesinska A, Wojdyla K, Nedic O, Baron CP, Griffiths HR., Free Radic. Res. 48(10), 2014
PMID: 25072785
Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies.
Fedorova M, Bollineni RC, Hoffmann R., Mass Spectrom Rev 33(2), 2014
PMID: 23832618
SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency.
Schlotawa L, Ennemann EC, Radhakrishnan K, Schmidt B, Chakrapani A, Christen HJ, Moser H, Steinmann B, Dierks T, Gartner J., Eur. J. Hum. Genet. 19(3), 2011
PMID: 21224894
Anaerobic sulfatase-maturating enzyme--a mechanistic link with glycyl radical-activating enzymes?
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., FEBS J. 277(8), 2010
PMID: 20218986
An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily.
van Loo B, Jonas S, Babtie AC, Benjdia A, Berteau O, Hyvonen M, Hollfelder F., Proc. Natl. Acad. Sci. U.S.A. 107(7), 2010
PMID: 20133613
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J. Biol. Chem. 283(26), 2008
PMID: 18408004
Carbonylation of milk powder proteins as a consequence of processing conditions.
Fenaille F, Parisod V, Tabet JC, Guy PA., Proteomics 5(12), 2005
PMID: 16038017
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705

18 References

Data provided by Europe PubMed Central.

A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923

Dierks, J. Biol. Chem. 273(), 1998

Szameit, J. Biol. Chem. 274(), 1999
Sunlight and skin cancer: another link revealed.
Kraemer KH., Proc. Natl. Acad. Sci. U.S.A. 94(1), 1997
PMID: 8990152
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Boltes I, Czapinska H, Kahnert A, von Bulow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Uson I., Structure 9(6), 2001
PMID: 11435113
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W., Biochemistry 37(11), 1998
PMID: 9521684

Hopwood, 2001

Dierks, 2001

Knaust, Biochemistry 37(), 1998

Sommerlade, J. Biol. Chem. 269(), 1994
A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.
Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R., EMBO J. 15(24), 1996
PMID: 9003769
Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.
Shevchenko A, Wilm M, Vorm O, Mann M., Anal. Chem. 68(5), 1996
PMID: 8779443

Marquordt, J. Biol. Chem. (), 0

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 12526009
PubMed | Europe PMC

Search this title in

Google Scholar