Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme

Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, Figura von K, Ficner R (2005)
JOURNAL OF BIOLOGICAL CHEMISTRY 280(15): 15180-15187.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
In eukaryotes, sulfate esters are degraded by sulfatases, which possess a unique C alpha-formylglycine residue in their active site. The defect in post-translational formation of the C alpha-formylglycine residue causes a severe lysosomal storage disorder in humans. Recently, FGE (formylglycine-generating enzyme) has been identified as the protein required for this specific modification. Using sequence comparisons, a protein homologous to FGE was found and denoted pFGE (paralog of FGE). pFGE binds a sulfatase-derived peptide bearing the FGE recognition motif, but it lacks formylglycine-generating activity. Both proteins belong to a large family of pro- and eukaryotic proteins containing the DUF323 domain, a formylglycine-generating enzyme domain of unknown three-dimensional structure. We have crystallized the glycosylated human pFGE and determined its crystal structure at a resolution of 1.86 angstrom. The structure reveals a novel fold, which we denote the FGE fold and which therefore serves as a paradigm for the DUF323 domain. It is characterized by an asymmetric partitioning of secondary structure elements and is stabilized by two calcium cations. A deep cleft on the surface of pFGE most likely represents the sulfatase polypeptide binding site. The asymmetric unit of the pFGE crystal contains a homodimer. The putative peptide binding site is buried between the monomers, indicating a biological significance of the dimer. The structure suggests the capability of pFGE to form a heterodimer with FGE.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Dickmanns A, Schmidt B, Rudolph MG, et al. Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme. JOURNAL OF BIOLOGICAL CHEMISTRY. 2005;280(15):15180-15187.
Dickmanns, A., Schmidt, B., Rudolph, M. G., Mariappan, M., Dierks, T., Figura von, K., & Ficner, R. (2005). Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(15), 15180-15187.
Dickmanns, A., Schmidt, B., Rudolph, M. G., Mariappan, M., Dierks, T., Figura von, K., and Ficner, R. (2005). Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme. JOURNAL OF BIOLOGICAL CHEMISTRY 280, 15180-15187.
Dickmanns, A., et al., 2005. Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(15), p 15180-15187.
A. Dickmanns, et al., “Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, 2005, pp. 15180-15187.
Dickmanns, A., Schmidt, B., Rudolph, M.G., Mariappan, M., Dierks, T., Figura von, K., Ficner, R.: Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme. JOURNAL OF BIOLOGICAL CHEMISTRY. 280, 15180-15187 (2005).
Dickmanns, A, Schmidt, B, Rudolph, MG, Mariappan, M, Dierks, Thomas, Figura von, K, and Ficner, R. “Crystal structure of human pFGE, the paralog of the C alpha-formylglycine-generating enzyme”. JOURNAL OF BIOLOGICAL CHEMISTRY 280.15 (2005): 15180-15187.
This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarova P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J. Biol. Chem. 283(29), 2008
PMID: 18390551
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J. 275(6), 2008
PMID: 18266766
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG., Proc. Natl. Acad. Sci. U.S.A. 103(1), 2006
PMID: 16368756
Sulfatases and human disease.
Diez-Roux G, Ballabio A., Annu Rev Genomics Hum Genet 6(), 2005
PMID: 16124866
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15687489
PubMed | Europe PMC

Search this title in

Google Scholar