Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids

Dückers N, Baer K, Simon S, Gröger H, Hummel W (2010)
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 88(2): 409-424.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Threonine aldolases (TAs) constitute a powerful tool for catalyzing carbon-carbon bond formations in synthetic organic chemistry, thus enabling an enantio- and diastereoselective synthesis of beta-hydroxy-alpha-amino acids. Starting from the achiral precursors glycine and an aldehyde, two new stereogenic centres are formed in this catalytic step. The resulting chiral beta-hydroxy-alpha-amino acid products are important precursors for pharmaceuticals such as thiamphenicol, a l-threo-phenylserine derivative or l-threo-3,4-dihydroxyphenylserine. TAs are pyridoxal-5-phosphate-dependent enzymes, which, in nature, catalyze the cleavage of l-threonine or l-allo-threonine to glycine and acetaldehyde in a glycine biosynthetic pathway. TAs from a broad number of species of bacteria and fungi have been isolated and characterised as biocatalysts for the synthesis of beta-hydroxy-alpha-amino acids. In this review, screening methods to obtain novel TAs, their biological function, biochemical characterisation and preparative biotransformations with TAs are described.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Dückers N, Baer K, Simon S, Gröger H, Hummel W. Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2010;88(2):409-424.
Dückers, N., Baer, K., Simon, S., Gröger, H., & Hummel, W. (2010). Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 88(2), 409-424.
Dückers, N., Baer, K., Simon, S., Gröger, H., and Hummel, W. (2010). Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 88, 409-424.
Dückers, N., et al., 2010. Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 88(2), p 409-424.
N. Dückers, et al., “Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids”, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 88, 2010, pp. 409-424.
Dückers, N., Baer, K., Simon, S., Gröger, H., Hummel, W.: Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 88, 409-424 (2010).
Dückers, Nina, Baer, Katrin, Simon, Sabine, Gröger, Harald, and Hummel, Werner. “Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids”. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 88.2 (2010): 409-424.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids.
Fesko K, Strohmeier GA, Breinbauer R., Appl. Microbiol. Biotechnol. 99(22), 2015
PMID: 26189018
Direct Catalytic Asymmetric Aldol Reaction of an α-Azido Amide.
Weidner K, Sun Z, Kumagai N, Shibasaki M., Angew. Chem. Int. Ed. Engl. 54(21), 2015
PMID: 25824871
Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynthesis.
Liu G, Zhang M, Chen X, Zhang W, Ding W, Zhang Q., J. Mol. Evol. 80(2), 2015
PMID: 25644973
Development of a growth-dependent selection system for identification of L-threonine aldolases.
Bulut D, Groger H, Hummel W., Appl. Microbiol. Biotechnol. 99(14), 2015
PMID: 25616526
Engineered L-serine hydroxymethyltransferase from Streptococcus thermophilus for the synthesis of α,α-dialkyl-α-amino acids.
Hernandez K, Zelen I, Petrillo G, Uson I, Wandtke CM, Bujons J, Joglar J, Parella T, Clapes P., Angew. Chem. Int. Ed. Engl. 54(10), 2015
PMID: 25611820
Molecular basis of E. coli L-threonine aldolase catalytic inactivation at low pH.
Remesh SG, Ghatge MS, Ahmed MH, Musayev FN, Gandhi A, Chowdhury N, di Salvo ML, Kellogg GE, Contestabile R, Schirch V, Safo MK., Biochim. Biophys. Acta 1854(4), 2015
PMID: 25560296
Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.
Barig S, Funke A, Merseburg A, Schnitzlein K, Stahmann KP., Enzyme Microb. Technol. 60(), 2014
PMID: 24835099
DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications.
Falcicchio P, Wolterink-Van Loo S, Franssen MC, van der Oost J., Extremophiles 18(1), 2014
PMID: 24166576
On the catalytic mechanism and stereospecificity of Escherichia coli L-threonine aldolase.
di Salvo ML, Remesh SG, Vivoli M, Ghatge MS, Paiardini A, D'Aguanno S, Safo MK, Contestabile R., FEBS J. 281(1), 2014
PMID: 24165453
Enzyme catalysed tandem reactions.
Oroz-Guinea I, Garcia-Junceda E., Curr Opin Chem Biol 17(2), 2013
PMID: 23490810

68 References

Data provided by Europe PubMed Central.


F, Tetrahedron 64(), 2008
Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs.
Samach A, Hareven D, Gutfinger T, Ken-Dror S, Lifschitz E., Proc. Natl. Acad. Sci. U.S.A. 88(7), 1991
PMID: 2011578
Serine hydroxymethyltransferase.
Schirch L., Adv. Enzymol. Relat. Areas Mol. Biol. 53(), 1982
PMID: 7036682

U, Angew Chem Int Ed Engl 19(), 1980
Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation.
Seebeck FP, Hilvert D., J. Am. Chem. Soc. 125(34), 2003
PMID: 12926923

H, J Org Chem 63(), 1998

J, Tetrahedron 63(), 2007

J, Tetrahedron 63(), 2007

J, Adv Synth Catal 349(), 2007
Overcoming thermodynamic and kinetic limitations of aldolase-catalyzed reactions by applying multienzymatic dynamic kinetic asymmetric transformations.
Steinreiber J, Schurmann M, Wolberg M, van Assema F, Reisinger C, Fesko K, Mink D, Griengl H., Angew. Chem. Int. Ed. Engl. 46(10), 2007
PMID: 17397072

T, Synlett 9(), 2002

T, Synlett 2(), 2004

VP, Tetrahedron Lett 36(), 1995
Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst.
Vidal L, Calveras J, Clapes P, Ferrer P, Caminal G., Appl. Microbiol. Biotechnol. 68(4), 2005
PMID: 15726349

M, Biosci Biotechnol Biochem 62(), 1998

H, Agric Biol Chem 35(), 1971

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20683718
PubMed | Europe PMC

Search this title in

Google Scholar