Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians

Grosse-Knetter C, Kögerler R (1993)
Phys.Rev. D 48(6): 2865-2876.

Journal Article | Published | English

No fulltext has been uploaded

Author
;
Abstract
Within the framework of the path-integral formalism we examine the different method of removing the unphysical degrees of freedom from spontaneously broken gauge theories. These are the construction of the unitary gauge by gauge fixing, an R(zeta)-limiting procedure, and the decoupling of the unphysical fields by field transformations. In the unitary gauge there exists an extra quartically divergent Higgs self-interaction term, which cannot be neglected if perturbative calculations are performed in this gauge. Using the Stueckelberg formalism this procedure can be reversed; i.e., a gauge theory can be reconstructed from its unitary gauge. We also discuss the equivalence of effective-Lagrangian theories, containing arbitrary interactions, to (nonlinearly realized) spontaneously broken gauge theories and we show how they can be extended to Higgs models.
Publishing Year
ISSN
PUB-ID

Cite this

Grosse-Knetter C, Kögerler R. Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians. Phys.Rev. D. 1993;48(6):2865-2876.
Grosse-Knetter, C., & Kögerler, R. (1993). Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians. Phys.Rev. D, 48(6), 2865-2876.
Grosse-Knetter, C., and Kögerler, R. (1993). Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians. Phys.Rev. D 48, 2865-2876.
Grosse-Knetter, C., & Kögerler, R., 1993. Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians. Phys.Rev. D, 48(6), p 2865-2876.
C. Grosse-Knetter and R. Kögerler, “Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians”, Phys.Rev. D, vol. 48, 1993, pp. 2865-2876.
Grosse-Knetter, C., Kögerler, R.: Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians. Phys.Rev. D. 48, 2865-2876 (1993).
Grosse-Knetter, Carsten, and Kögerler, Reinhart. “Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians”. Phys.Rev. D 48.6 (1993): 2865-2876.
This data publication is cited in the following publications:
This publication cites the following data publications:

47 References

Data provided by Europe PubMed Central.

Low-energy theorems for strongly interacting W's and Z's.
Chanowitz M, Golden M, Georgi H., Phys. Rev., D 36(5), 1987
PMID: 9958324
Low energy effects of new interactions in the electroweak boson sector.
Hagiwara K, Ishihara S, Szalapski R, Zeppenfeld D., Phys. Rev., D 48(5), 1993
PMID: 10016456
Anomalous gauge boson couplings and loop calculations.
Burgess CP, London D., Phys. Rev. Lett. 69(24), 1992
PMID: 10046819
Muon Magnetic Moment in a Finite Theory of Weak and Electromagnetic Interactions
Bars, Physical Review D 6(1), 1972
A Model of Leptons
Weinberg, Physical Review Letters 19(21), 1967
Theory of Charged Vector Mesons Interacting with the Electromagnetic Field
Lee, Physical Review 128(2), 1962
Spontaneous Symmetry Breakdown without Massless Bosons
Higgs, Physical Review 145(4), 1966
Symmetry Breaking in Non-Abelian Gauge Theories
Kibble, Physical Review 155(5), 1967
Space-Time Approach to Non-Relativistic Quantum Mechanics
Feynman, Reviews of Modern Physics 20(2), 1948
Gauge theories1
ABERS, Physics Reports 9(1), 1973
One-loop effects of non-standard triple gauge boson vertices
HERNANDEZ, Physics Letters B 307(1-2), 1993
Low-energy constraints on electroweak three gauge boson couplings
Hagiwara, Physics Letters B 283(3-4), 1992
Path integral quantization of field theories with second-class constraints1, 2
SENJANOVIC, Annals of Physics 100(1-2), 1976
Field transformations, collective coordinates and BRST invariance
ALFARO, Annals of Physics 202(2), 1990
S-matrix derivation of the Weinberg Model1
JOGLEKAR, Annals of Physics 83(2), 1974

DELBOURGO, International Journal of Modern Physics A 3(2), 1988
Polarization amplitudes fore + e − →W + W − ande + e − →ZZ
Gaemers, Zeitschrift für Physik C Particles and Fields 1(3), 1979
The anomalous 3-boson couplings as an implication of the Higgs sector
Gounaris, Zeitschrift für Physik C Particles and Fields 59(1), 1993
Low-energy manifestations of a new interactions scale: Operator analysis
Leung, Zeitschrift für Physik C Particles and Fields 31(3), 1986
The Generalized Stueckelberg Formalism and the Glashow-Weinberg-Salam Electroweak Model
Sonoda, Progress of Theoretical Physics 71(4), 1984
Generalization of the Stueckelberg Formalism to the Massive Yang-Mills Field
Kunimasa, Progress of Theoretical Physics 37(2), 1967

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10016534
PubMed | Europe PMC

arXiv hep-ph/9212268

Inspire 341612

Search this title in

Google Scholar