Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells

Kim BS, Lee CCI, Christensen JE, Huser T, Chan JW, Tarantal AF (2008)
Stem Cells and Development 17(1): 185-198.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
The goal of this study was to compare the growth and differentiation potential of rhesus monkey mesenchymal stem cells (rhMSCs) from different age groups (fetal, newborn, infant, juvenile), and to use confocal micro-Raman spectroscopy to assess the intrinsic biomolecular profiles of individual rhMSCs. Results indicated that fetal cells had significantly shorter population doubling times during the log growth phase (23.3 +/- 1.3 h) and greater population doubling times (66.5 +/- 6.5) when compared to other age groups (newborn 51.9 +/- 2.3, infant 38.2 +/- 3.1, juvenile 40.7 +/- 4.1). Fetal rhMSCs also differentiated toward osteogenic and adipogenic lineages at a faster rate when compared to cells from older animals. The Raman spectral analysis showed greater DNA and lower protein concentration in fetal compared to juvenile rhMSCs, although the spectra from different age groups shared many similar features. Additionally, principal component analysis (PCA), which is used to discriminate between rhMSCs, supported prior findings that suggested that cultured rhMSCs consist of a heterogeneous cell population. Although the growth potential of rhMSCs from the younger age groups was confirmed, further studies will be necessary to fully explore the potential usefulness of Raman micro-spectroscopy to characterize stem and progenitor cells such as rhMSCs.
Erscheinungsjahr
Zeitschriftentitel
Stem Cells and Development
Band
17
Zeitschriftennummer
1
Seite
185-198
ISSN
eISSN
PUB-ID

Zitieren

Kim BS, Lee CCI, Christensen JE, Huser T, Chan JW, Tarantal AF. Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells and Development. 2008;17(1):185-198.
Kim, B. S., Lee, C. C. I., Christensen, J. E., Huser, T., Chan, J. W., & Tarantal, A. F. (2008). Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells and Development, 17(1), 185-198. doi:10.1089/scd.2007.0076
Kim, B. S., Lee, C. C. I., Christensen, J. E., Huser, T., Chan, J. W., and Tarantal, A. F. (2008). Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells and Development 17, 185-198.
Kim, B.S., et al., 2008. Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells and Development, 17(1), p 185-198.
B.S. Kim, et al., “Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells”, Stem Cells and Development, vol. 17, 2008, pp. 185-198.
Kim, B.S., Lee, C.C.I., Christensen, J.E., Huser, T., Chan, J.W., Tarantal, A.F.: Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells and Development. 17, 185-198 (2008).
Kim, Brandon S., Lee, C. Chang I., Christensen, Jared E., Huser, Thomas, Chan, James W., and Tarantal, Alice F. “Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells”. Stem Cells and Development 17.1 (2008): 185-198.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data.
Mirshafiee V, Harley BAC, Kraft ML., Tissue Eng Part C Methods 24(6), 2018
PMID: 29652627
Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells.
Hofemeier AD, Hachmeister H, Pilger C, Schürmann M, Greiner JF, Nolte L, Sudhoff H, Kaltschmidt C, Huser T, Kaltschmidt B., Sci Rep 6(), 2016
PMID: 27225821
Vibrational spectroscopy in stem cell characterisation: is there a niche?
Sulé-Suso J, Forsyth NR, Untereiner V, Sockalingum GD., Trends Biotechnol 32(5), 2014
PMID: 24703620
The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application.
Zhang ZY, Teoh SH, Hui JH, Fisk NM, Choolani M, Chan JK., Biomaterials 33(9), 2012
PMID: 22217806
Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells.
Pascut FC, Goh HT, Welch N, Buttery LD, Denning C, Notingher I., Biophys J 100(1), 2011
PMID: 21190678
Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies.
Gong M, Bi Y, Jiang W, Zhang Y, Chen L, Hou N, Liu Y, Wei X, Chen J, Li T., J Biomed Sci 18(), 2011
PMID: 22118013
Clonal analysis and hierarchy of human bone marrow mesenchymal stem and progenitor cells.
Lee CC, Christensen JE, Yoder MC, Tarantal AF., Exp Hematol 38(1), 2010
PMID: 19900502
Comparative characterization of mesenchymal stem cells from different age groups of cynomolgus monkeys.
Ren Z, Wang J, Zou C, Guan Y, Zhang YA., Sci China Life Sci 53(5), 2010
PMID: 20596939
In situ monitoring of adipogenesis with human-adipose-derived stem cells using surface-enhanced Raman spectroscopy.
Moody B, Haslauer CM, Kirk E, Kannan A, Loboa EG, McCarty GS., Appl Spectrosc 64(11), 2010
PMID: 21073790
Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, Chan J., Stem Cells 27(1), 2009
PMID: 18832592

61 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Fibroblast precursors in normal and irradiated mouse hematopoietic organs.
Friedenstein AJ, Gorskaja JF, Kulagina NN., Exp. Hematol. 4(5), 1976
PMID: 976387
Characterization of fibroblastic stromal cells from murine bone marrow.
Piersma AH, Brockbank KG, Ploemacher RE, van Vliet E, Brakel-van Peer KM, Visser PJ., Exp. Hematol. 13(4), 1985
PMID: 2580729
Multilineage potential of adult human mesenchymal stem cells.
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR., Science 284(5411), 1999
PMID: 10102814

Ashton, Clin Orthop Relat Res 151(), 1980
Mesenchymal stem cells.
Caplan AI., J. Orthop. Res. 9(5), 1991
PMID: 1870029
Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers.
Friedenstein AJ, Chailakhyan RK, Gerasimov UV., Cell Tissue Kinet 20(3), 1987
PMID: 3690622
Characterization of cells with osteogenic potential from human marrow.
Haynesworth SE, Goshima J, Goldberg VM, Caplan AI., Bone 13(1), 1992
PMID: 1581112
Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.
Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF., Tissue Eng. 4(4), 1998
PMID: 9916173
Stromal stem cells: marrow-derived osteogenic precursors.
Owen M, Friedenstein AJ., Ciba Found. Symp. 136(), 1988
PMID: 3068016
Human mesenchymal stem cells maintain transgene expression during expansion and differentiation.
Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD., Mol. Ther. 3(6), 2001
PMID: 11407899
Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells.
Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J., Mol. Ther. 5(5 Pt 1), 2002
PMID: 11991746
Human mesenchymal stem cells modulate allogeneic immune cell responses.
Aggarwal S, Pittenger MF., Blood 105(4), 2004
PMID: 15494428
Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens.
Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, Eljaafari A., Biorheology 41(3-4), 2004
PMID: 15299278
Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype.
Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F., Haematologica 90(4), 2005
PMID: 15820948
Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH).
Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W., Bone Marrow Transplant. 30(4), 2002
PMID: 12203137
Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response.
Badillo AT, Beggs KJ, Javazon EH, Tebbets JC, Flake AW., Biol. Blood Marrow Transplant. 13(4), 2007
PMID: 17382248
Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion.
Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, Sturgeon C, Hewett T, Chung T, Stock W, Sher D, Weissman S, Ferrer K, Mosca J, Deans R, Moseley A, Hoffman R., Exp. Hematol. 29(2), 2001
PMID: 11166464
Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques.
Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA., Stem Cells Dev. 14(4), 2005
PMID: 16137233
Transplantation of human peripheral blood stem cells into fetal rhesus monkeys (Macaca mulatta).
Tarantal AF, Goldstein O, Barley F, Cowan MJ., Transplantation 69(9), 2000
PMID: 10830217
Studying single living cells and chromosomes by confocal Raman microspectroscopy.
Puppels GJ, de Mul FF, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM., Nature 347(6290), 1990
PMID: 2205805
Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells.
Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, Huser T., Biophys. J. 90(2), 2005
PMID: 16239327
The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines.
Crow P, Barrass B, Kendall C, Hart-Prieto M, Wright M, Persad R, Stone N., Br. J. Cancer 92(12), 2005
PMID: 15928665
In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro.
Notingher I, Bisson I, Bishop AE, Randle WL, Polak JM, Hench LL., Anal. Chem. 76(11), 2004
PMID: 15167800

AUTHOR UNKNOWN, 0
Automated method for subtraction of fluorescence from biological Raman spectra.
Lieber CA, Mahadevan-Jansen A., Appl Spectrosc 57(11), 2003
PMID: 14658149
The serial cultivation of human diploid cell strains.
HAYFLICK L, MOORHEAD PS., Exp. Cell Res. 25(), 1961
PMID: 13905658
Replicative senescence of human fibroblast-like cells in culture.
Cristofalo VJ, Pignolo RJ., Physiol. Rev. 73(3), 1993
PMID: 8332640

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow.
Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F., J. Cell. Biochem. 97(4), 2006
PMID: 16229018
In vitro aging of human bone marrow derived stromal cells.
Mets T, Verdonk G., Mech. Ageing Dev. 16(1), 1981
PMID: 7253722
Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.
Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ., J. Cell. Biochem. 75(3), 1999
PMID: 10536366
Aging of mesenchymal stem cells.
Sethe S, Scutt A, Stolzing A., Ageing Res. Rev. 5(1), 2005
PMID: 16310414
Colony size distributions as a measure of in vivo and in vitro aging.
Smith JR, Pereira-Smith OM, Schneider EL., Proc. Natl. Acad. Sci. U.S.A. 75(3), 1978
PMID: 274723
The profile of gene expression of human marrow mesenchymal stem cells.
Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL, Santos AR, Zago MA., Stem Cells 21(6), 2003
PMID: 14595126
Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I., Stem Cells 22(5), 2004
PMID: 15342932
Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP., J. Cell. Biochem. 64(2), 1997
PMID: 9027589
The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.
Friedenstein AJ, Chailakhjan RK, Lalykina KS., Cell Tissue Kinet 3(4), 1970
PMID: 5523063
Variations in the stromal cell population of human bone marrow during aging.
Mets T, Verdonk G., Mech. Ageing Dev. 15(1), 1981
PMID: 7278390
Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow.
Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ., J. Cell. Sci. 116(Pt 9), 2003
PMID: 12665563
The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors.
Gronthos S, Graves SE, Ohta S, Simmons PJ., Blood 84(12), 1994
PMID: 7994030
Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy.
Mourant JR, Short KW, Carpenter S, Kunapareddy N, Coburn L, Powers TM, Freyer JP., J Biomed Opt 10(3), 2005
PMID: 16229631
Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures.
Short KW, Carpenter S, Freyer JP, Mourant JR., Biophys. J. 88(6), 2005
PMID: 15764662

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells.
Notingher I, Verrier S, Haque S, Polak JM, Hench LL., Biopolymers 72(4), 2003
PMID: 12833477
In situ monitoring of cell death using Raman microspectroscopy.
Verrier S, Notingher I, Polak JM, Hench LL., Biopolymers 74(1-2), 2004
PMID: 15137115

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18211228
PubMed | Europe PMC

Suchen in

Google Scholar