Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity

Jin BB, Dahm T, Iniotakis C, Gubin AI, Choi EM, Kim HJ, Lee SI, Kang WN, Wang SF, Zhou YL, Pogrebnyakov AV, et al. (2005)
Superconductor Science and Technology 18(1): L1-L4.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
The dependences of magnetic field penetration depth at zero temperature lambda(0), microwave surface resistance R(s) and pi -band energy gap at zero temperature Delta(pi)(0) on the normal-state resistivity fight above the critical, rho(0), were studied for MgB(2) thin films prepared by different temperature. techniques by employing a sapphire resonator technique. We found that the zero-temperature penetration depth lambda(0) data could be well fitted by lambda(L)(1 + xi(0)/l)(1/2) yielding a London penetration depth lambda(L) of 34.5 nm, where xi(0) is the coherence length, and l is the mean free path determined from rho(0). The surface resistance R(s) at 15 and 20 K increases roughly linearly with rho(0). The observed increase of Delta(pi)(0) with rho(0) and the decrease of T(c) indicate the expected effects of interband impurity scattering within an extended BCS approach. The low values of R(s) and lambda(0) in conjunction with the large coherence length for epitaxial films are potentially attractive for applications in electronics and microwave technology.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Jin BB, Dahm T, Iniotakis C, et al. Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity. Superconductor Science and Technology. 2005;18(1):L1-L4.
Jin, B. B., Dahm, T., Iniotakis, C., Gubin, A. I., Choi, E. M., Kim, H. J., Lee, S. I., et al. (2005). Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity. Superconductor Science and Technology, 18(1), L1-L4.
Jin, B. B., Dahm, T., Iniotakis, C., Gubin, A. I., Choi, E. M., Kim, H. J., Lee, S. I., Kang, W. N., Wang, S. F., Zhou, Y. L., et al. (2005). Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity. Superconductor Science and Technology 18, L1-L4.
Jin, B.B., et al., 2005. Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity. Superconductor Science and Technology, 18(1), p L1-L4.
B.B. Jin, et al., “Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity”, Superconductor Science and Technology, vol. 18, 2005, pp. L1-L4.
Jin, B.B., Dahm, T., Iniotakis, C., Gubin, A.I., Choi, E.M., Kim, H.J., Lee, S.I., Kang, W.N., Wang, S.F., Zhou, Y.L., Pogrebnyakov, A.V., Redwing, J.M., Xi, X.X., Klein, N.: Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity. Superconductor Science and Technology. 18, L1-L4 (2005).
Jin, BB, Dahm, Thomas, Iniotakis, C, Gubin, AI, Choi, EM, Kim, HJ, Lee, SI, Kang, WN, Wang, SF, Zhou, YL, Pogrebnyakov, AV, Redwing, JM, Xi, XX, and Klein, N. “Dependence of penetration depth, microwave surface resistance and energy gap of MgB(2) thin films on their normal-state resistivity”. Superconductor Science and Technology 18.1 (2005): L1-L4.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar