Formation of quantum-degenerate sodium molecules

Xu K, Mukaiyama T, Abo-Shaeer JR, Chin JK, Miller D, Ketterle W (2003)
Physical Review Letters 91(21).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Ultracold sodium molecules were produced from an atomic Bose-Einstein condensate by ramping an applied magnetic field across a Feshbach resonance. More than 10(5) molecules were generated with a conversion efficiency of similar to4%. Using laser light resonant with an atomic transition, the remaining atoms could be selectively removed, preventing fast collisional relaxation of the molecules. Time-of-flight analysis of the pure molecular sample yielded an instantaneous phase-space density greater than 20.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Xu K, Mukaiyama T, Abo-Shaeer JR, Chin JK, Miller D, Ketterle W. Formation of quantum-degenerate sodium molecules. Physical Review Letters. 2003;91(21).
Xu, K., Mukaiyama, T., Abo-Shaeer, J. R., Chin, J. K., Miller, D., & Ketterle, W. (2003). Formation of quantum-degenerate sodium molecules. Physical Review Letters, 91(21).
Xu, K., Mukaiyama, T., Abo-Shaeer, J. R., Chin, J. K., Miller, D., and Ketterle, W. (2003). Formation of quantum-degenerate sodium molecules. Physical Review Letters 91.
Xu, K., et al., 2003. Formation of quantum-degenerate sodium molecules. Physical Review Letters, 91(21).
K. Xu, et al., “Formation of quantum-degenerate sodium molecules”, Physical Review Letters, vol. 91, 2003.
Xu, K., Mukaiyama, T., Abo-Shaeer, J.R., Chin, J.K., Miller, D., Ketterle, W.: Formation of quantum-degenerate sodium molecules. Physical Review Letters. 91, (2003).
Xu, K, Mukaiyama, T, Abo-Shaeer, JR, Chin, JK, Miller, David, and Ketterle, W. “Formation of quantum-degenerate sodium molecules”. Physical Review Letters 91.21 (2003).
This data publication is cited in the following publications:
This publication cites the following data publications:

34 Citations in Europe PMC

Data provided by Europe PubMed Central.

Total control over ultracold interactions via electric and magnetic fields.
Marcelis B, Verhaar B, Kokkelmans S., Phys. Rev. Lett. 100(15), 2008
PMID: 18518105
Atom-molecule Rabi oscillations in a Mott insulator.
Syassen N, Bauer DM, Lettner M, Dietze D, Volz T, Durr S, Rempe G., Phys. Rev. Lett. 99(3), 2007
PMID: 17678287
Ultracold molecule production via a resonant oscillating magnetic field.
Thompson ST, Hodby E, Wieman CE., Phys. Rev. Lett. 95(19), 2005
PMID: 16383963
Creating ground state molecules with optical feshbach resonances in tight traps.
Koch CP, Masnou-Seeuws F, Kosloff R., Phys. Rev. Lett. 94(19), 2005
PMID: 16090168
Quantum phases in a resonantly interacting boson-fermion mixture.
Dickerscheid DB, van Oosten D, Tillema EJ, Stoof HT., Phys. Rev. Lett. 94(23), 2005
PMID: 16090448
Molecular production in two component atomic fermi gases.
Chwedenczuk J, Goral K, Kohler T, Julienne PS., Phys. Rev. Lett. 93(26 Pt 1), 2004
PMID: 15697957
Molecular matter-wave amplifier.
Search CP, Meystre P., Phys. Rev. Lett. 93(14), 2004
PMID: 15524774
Exactly solvable models for atom-molecule Hamiltonians.
Dukelsky J, Dussel GG, Esebbag C, Pittel S., Phys. Rev. Lett. 93(5), 2004
PMID: 15323678

22 References

Data provided by Europe PubMed Central.


inguscio, 1999

huang, 1987

grimm, 0
Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
Greiner M, Mandel O, Esslinger T, Hansch TW, Bloch I., Nature 415(6867), 2002
PMID: 11780110

Ketterle, Nature 392(6672), 1998

Doyle, Nature 395(6698), 1998
Atom-molecule coherence in a Bose-Einstein condensate.
Donley EA, Claussen NR, Thompson ST, Wieman CE., Nature 417(6888), 2002
PMID: 12037562
Laser cooling of molecules: A sequential scheme for rotation, translation, and vibration
Bahns, The Journal of Chemical Physics 104(24), 1996
Determination of collisional properties of cold Na atoms from analysis of bound-state photoassociation and Feshbach resonance field data
van, Physical Review A 59(1), 1999
Atom loss from Bose-Einstein condensates due to Feshbach resonance
Yurovsky, Physical Review A 60(2), 1999
Manipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fields
Mies, Physical Review A 61(2), 2000
Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate near Feshbach Resonances
Stenger, Physical Review Letters 82(12), 1999
Time-Dependent Feshbach Resonance Scattering and Anomalous Decay of a Na Bose-Einstein Condensate
van, Physical Review Letters 83(8), 1999
Decelerating Neutral Dipolar Molecules
Bethlem, Physical Review Letters 83(8), 1999
Resonances in ultracold collisions of 6Li, 7Li, and 23Na.
Moerdijk AJ, Verhaar BJ, Axelsson A., Phys. Rev., A 51(6), 1995
PMID: 9912176
Molecules in a bose-einstein condensate
Wynar R, Freeland RS, Han DJ, Ryu C, Heinzen DJ., Science 287(5455), 2000
PMID: 10669408
Creation of a molecular condensate by dynamically melting a Mott insulator.
Jaksch D, Venturi V, Cirac JI, Williams CJ, Zoller P., Phys. Rev. Lett. 89(4), 2002
PMID: 12144471
Quantum dynamics of ultracold Na+ Na2 collisions.
Soldan P, Cvitas MT, Hutson JM, Honvault P, Launay JM., Phys. Rev. Lett. 89(15), 2002
PMID: 12365986
Formation of a molecular Bose-Einstein condensate and an entangled atomic gas by Feshbach resonance
Yurovsky, Physical Review A 67(4), 2003
Creation of ultracold molecules from a Fermi gas of atoms.
Regal CA, Ticknor C, Bohn JL, Jin DS., Nature 424(6944), 2003
PMID: 12840753
Conversion of an atomic Fermi gas to a long-lived molecular Bose gas.
Strecker KE, Partridge GB, Hulet RG., Phys. Rev. Lett. 91(8), 2003
PMID: 14525229
Preparation of a pure molecular quantum gas.
Herbig J, Kraemer T, Mark M, Weber T, Chin C, Nagerl HC, Grimm R., Science 301(5639), 2003
PMID: 12934014

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 14683282
PubMed | Europe PMC

Search this title in

Google Scholar