Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins

Couturier J, Stroeher E, Albetel A-N, Roret T, Muthuramalingam M, Tarrago L, Seidel T, Tsan P, Jacquot J-P, Johnson MK, Dietz K-J, et al. (2011)
Journal of Biological Chemistry 286(31): 27515-27527.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Unlike thioredoxins, glutaredoxins are involved in iron-sulfur cluster assembly and in reduction of specific disulfides (i.e. protein-glutathione adducts), and thus they are also important redox regulators of chloroplast metabolism. Using GFP fusion, AtGrxC5 isoform, present exclusively in Brassicaceae, was shown to be localized in chloroplasts. A comparison of the biochemical, structural, and spectroscopic properties of Arabidopsis GrxC5 (WCSYC active site) with poplar GrxS12 (WCSYS active site), a chloroplastic paralog, indicated that, contrary to the solely apomonomeric GrxS12 isoform, AtGrxC5 exists as two forms when expressed in Escherichia coli. The monomeric apoprotein possesses deglutathionylation activity mediating the recycling of plastidial methionine sulfoxide reductase B1 and peroxiredoxin IIE, whereas the dimeric holoprotein incorporates a [2Fe-2S] cluster. Site-directed mutagenesis experiments and resolution of the x-ray crystal structure of AtGrxC5 in its holoform revealed that, although not involved in its ligation, the presence of the second active site cysteine (Cys(32)) is required for cluster formation. In addition, thiol titrations, fluorescence measurements, and mass spectrometry analyses showed that, despite the presence of a dithiol active site, AtGrxC5 does not form any inter-or intramolecular disulfide bond and that its activity exclusively relies on a monothiol mechanism.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Couturier J, Stroeher E, Albetel A-N, et al. Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. Journal of Biological Chemistry. 2011;286(31):27515-27527.
Couturier, J., Stroeher, E., Albetel, A. - N., Roret, T., Muthuramalingam, M., Tarrago, L., Seidel, T., et al. (2011). Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. Journal of Biological Chemistry, 286(31), 27515-27527.
Couturier, J., Stroeher, E., Albetel, A. - N., Roret, T., Muthuramalingam, M., Tarrago, L., Seidel, T., Tsan, P., Jacquot, J. - P., Johnson, M. K., et al. (2011). Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. Journal of Biological Chemistry 286, 27515-27527.
Couturier, J., et al., 2011. Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. Journal of Biological Chemistry, 286(31), p 27515-27527.
J. Couturier, et al., “Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins”, Journal of Biological Chemistry, vol. 286, 2011, pp. 27515-27527.
Couturier, J., Stroeher, E., Albetel, A.-N., Roret, T., Muthuramalingam, M., Tarrago, L., Seidel, T., Tsan, P., Jacquot, J.-P., Johnson, M.K., Dietz, K.-J., Didierjean, C., Rouhier, N.: Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins. Journal of Biological Chemistry. 286, 27515-27527 (2011).
Couturier, Jeremy, Stroeher, Elke, Albetel, Angela-Nadia, Roret, Thomas, Muthuramalingam, Meenakumari, Tarrago, Lionel, Seidel, Thorsten, Tsan, Pascale, Jacquot, Jean-Pierre, Johnson, Michael K., Dietz, Karl-Josef, Didierjean, Claude, and Rouhier, Nicolas. “Arabidopsis Chloroplastic Glutaredoxin C5 as a Model to Explore Molecular Determinants for Iron-Sulfur Cluster Binding into Glutaredoxins”. Journal of Biological Chemistry 286.31 (2011): 27515-27527.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana.
Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP., Plant Cell Environ. 38(2), 2015
PMID: 24428628
The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1.
Pegeot H, Koh CS, Petre B, Mathiot S, Duplessis S, Hecker A, Didierjean C, Rouhier N., Front Plant Sci 5(), 2014
PMID: 25566286
Structure-to-function relationships of bacterial translocator protein (TSPO): a focus on Pseudomonas.
Leneveu-Jenvrin C, Connil N, Bouffartigues E, Papadopoulos V, Feuilloley MG, Chevalier S., Front Microbiol 5(), 2014
PMID: 25477872
[2Fe-2S] cluster transfer in iron-sulfur protein biogenesis.
Banci L, Brancaccio D, Ciofi-Baffoni S, Del Conte R, Gadepalli R, Mikolajczyk M, Neri S, Piccioli M, Winkelmann J., Proc. Natl. Acad. Sci. U.S.A. 111(17), 2014
PMID: 24733926
Evolutionary development of redox regulation in chloroplasts.
Balsera M, Uberegui E, Schurmann P, Buchanan BB., Antioxid. Redox Signal. 21(9), 2014
PMID: 24483204
Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1.
Couturier J, Wu HC, Dhalleine T, Pegeot H, Sudre D, Gualberto JM, Jacquot JP, Gaymard F, Vignols F, Rouhier N., Mol Plant 7(1), 2014
PMID: 24203231
Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties.
Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P., Front Plant Sci 4(), 2013
PMID: 24282406
Glutaredoxins are essential for stress adaptation in the cyanobacterium Synechocystis sp. PCC 6803.
Sanchez-Riego AM, Lopez-Maury L, Florencio FJ., Front Plant Sci 4(), 2013
PMID: 24204369
Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications.
Zhang B, Bandyopadhyay S, Shakamuri P, Naik SG, Huynh BH, Couturier J, Rouhier N, Johnson MK., J. Am. Chem. Soc. 135(40), 2013
PMID: 24032439
Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.
Liu X, Liu S, Feng Y, Liu JZ, Chen Y, Pham K, Deng H, Hirschi KD, Wang X, Cheng N., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23690600
Oxidative folding in chloroplasts.
Kieselbach T., Antioxid. Redox Signal. 19(1), 2013
PMID: 23289792
Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.
Manta B, Pavan C, Sturlese M, Medeiros A, Crispo M, Berndt C, Krauth-Siegel RL, Bellanda M, Comini MA., Antioxid. Redox Signal. 19(7), 2013
PMID: 23259530
Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes.
Comini MA, Krauth-Siegel RL, Bellanda M., Antioxid. Redox Signal. 19(7), 2013
PMID: 22978520
Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.
Benyamina SM, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, de Lajudie P, Rouhier N, Jacquot JP, Alloing G, Puppo A, Frendo P., Environ. Microbiol. 15(3), 2013
PMID: 22891731
Glutathione- and glutaredoxin-dependent reduction of methionine sulfoxide reductase A.
Couturier J, Vignols F, Jacquot JP, Rouhier N., FEBS Lett. 586(21), 2012
PMID: 23022439
The biological roles of glutaredoxins.
Stroher E, Millar AH., Biochem. J. 446(3), 2012
PMID: 22928493
Glutathione regulates the transfer of iron-sulfur cluster from monothiol and dithiol glutaredoxins to apo ferredoxin.
Wang L, Ouyang B, Li Y, Feng Y, Jacquot JP, Rouhier N, Xia B., Protein Cell 3(9), 2012
PMID: 22886498
Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro.
Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemaire SD, Zaffagnini M, Trost P., Biochem. J. 445(3), 2012
PMID: 22607208
Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance.
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C., Antioxid. Redox Signal. 17(8), 2012
PMID: 22531002
Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.
Allen EM, Mieyal JJ., Antioxid. Redox Signal. 17(12), 2012
PMID: 22530666
A dithiol glutaredoxin cDNA from sweet potato (Ipomoea batatas [L.] Lam): enzyme properties and kinetic studies.
Chi XW, Lin CT, Jiang YC, Wen L, Lin CT., Plant Biol (Stuttg) 14(4), 2012
PMID: 22288388
Glutaredoxin GRXS13 plays a key role in protection against photooxidative stress in Arabidopsis.
Laporte D, Olate E, Salinas P, Salazar M, Jordana X, Holuigue L., J. Exp. Bot. 63(1), 2012
PMID: 21963612

62 References

Data provided by Europe PubMed Central.

NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.
Xia TH, Bushweller JH, Sodano P, Billeter M, Bjornberg O, Holmgren A, Wuthrich K., Protein Sci. 1(3), 1992
PMID: 1304339
Glutaredoxins and thioredoxins in plants.
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP., Biochim. Biophys. Acta 1783(4), 2008
PMID: 18047840
Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: kinetics and specificity in deglutathionylation reactions.
Gao XH, Zaffagnini M, Bedhomme M, Michelet L, Cassier-Chauvat C, Decottignies P, Lemaire SD., FEBS Lett. 584(11), 2010
PMID: 20406640
In vivo targets of S-thiolation in Chlamydomonas reinhardtii.
Michelet L, Zaffagnini M, Vanacker H, Le Marechal P, Marchand C, Schroda M, Lemaire SD, Decottignies P., J. Biol. Chem. 283(31), 2008
PMID: 18534986
Glutaredoxins: roles in iron homeostasis.
Rouhier N, Couturier J, Johnson MK, Jacquot JP., Trends Biochem. Sci. 35(1), 2010
PMID: 19811920
How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2?
Berndt C, Hudemann C, Hanschmann EM, Axelsson R, Holmgren A, Lillig CH., Antioxid. Redox Signal. 9(1), 2007
PMID: 17115894
The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.
Ceylan S, Seidel V, Ziebart N, Berndt C, Dirdjaja N, Krauth-Siegel RL., J. Biol. Chem. 285(45), 2010
PMID: 20826822
Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae.
Discola KF, de Oliveira MA, Rosa Cussiol JR, Monteiro G, Barcena JA, Porras P, Padilla CA, Guimaraes BG, Netto LE., J. Mol. Biol. 385(3), 2009
PMID: 18992757

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21632542
PubMed | Europe PMC

Search this title in

Google Scholar